长江上游水库群的热环境效应与修复对策
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal-effect of the upper Yangtze reservoirs and countermeasures
  • 作者:周建军 ; 杨倩 ; 张曼
  • 英文作者:ZHOU Jianjun;YANG Qian;ZHANG Man;Department of Hydraulic Engineering,Tsinghua University;
  • 关键词:水温 ; 热效应 ; 环境 ; 修复 ; 水面光伏 ; 梯级水库 ; 长江
  • 英文关键词:Water temperature;;thermal-effect;;environment;;restoration;;pool photovoltaic power(PPV);;cascade reservoirs;;Yangtze River
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:清华大学水利系;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家重点研发计划项目(2016YFE0133700);; 国家自然科学基金项目(51509137)联合资助
  • 语种:中文;
  • 页:FLKX201901001
  • 页数:17
  • CN:01
  • ISSN:32-1331/P
  • 分类号:3-19
摘要
本文根据实测资料揭示三峡水库运行以来冬季下泄水温抬高5.32℃、夏初降低3.45℃、过程滞后30~43天,三峡水库冬季水温平均高于气温10℃,且随水库蓄水位和上游水库增加不断升高.长江是罕见的从高热河源流向低热潮湿地区的世界大河,干流三峡等大型水库流量大、库容大且基本没有温度分层,水库滞热、散热和下泄热量巨大,下游水温改变范围超过汉口.需要重视的两个宏观效应:一是超温大幅降低水库和下游水溶解氧(DO),影响程度已与长江平均化学需氧量(COD)等污染同数量级,加上加速COD等耗氧,水温升高的污染危害更大;二是水库冬季巨大散热,11-1月库区平均散热强度241 W/m2、总热功率2.43亿kW,下泄潜在热量3.16亿kW、超过天然1.73亿kW,水库散发和下泄热量相当于全国平均用电功率. 2030年上游水电按规划全面建成后,冬季上游水库群还将附加吸热2亿kW(年热量2万亿kWh). DO是大坝对天然河流环境改变的重要方面,三峡支流库区现在连年水华、干流出现缺氧,水温升高进一步降低DO浓度和促进环境耗氧是当前库区和下游生态环境的主要问题之一.冬季干热河谷输出热水、2030年后更多梯级水库吸热并通过河流转移到三峡水库,巨大附加散热量对周边环境、水资源、土壤墒情和局部气候影响需要认真研究.建议在干热河谷梯级水库大规模布局水面光伏(PPV).一方面遮挡短波辐射抑制下游三峡入库水温进一步升高,另一方面利用梯级水电巨大储能、调节优势与光伏资源,互补互助、集约和大规模开发西南可再生能源与电力调节资源.本文研究显示PPV电量巨大和结构优势明显,是改善我国电力能源结构和提升水电的发展方向,还可带动更多绿色发展.
        In this paper,we use observational data to reveal that water temperature( T) discharging from the Three Gorges reservoir( TGR) downstream has been increased in excess of 5.3℃ in winters,and delayed by 30-43 days with the pool T exceeding the local air by 10℃ when comparing with the pre-impoundment situation. This fact is likely caused by the thermal effect of TGR and other reservoirs upstream,aggravation with the increasing impoundments upstream. Due to the enormous flow discharge,storage and well-mixed in the warmed pool,quantity of the modified heat is so huge that T change can extend over 690 km. Two effects should be listed as prior environmental issues currently: 1) the effect on dissolved oxygen( DO) in the pool and downstream,which is probably lowered by a magnitude comparable to the level of the chemical oxygen demand of the Yangtze and 2)the effect of the additional heat released from the pool and discharged downstream of TGR in winter,which is estimated to be 243GW( 241 W/m2 in density) and 173 GW in average in Nov.-Jan.( 2014-2016). In addition,another 200 GW heat is going to be trapped by pools that are planned to be impounded before 2030 upstream in the hot-valleys through water absorption of solar radiation,which will also a stressing forcing of warming for the TGR in the future. DO is known as a key eco-property for surface waters.At present,harmful algal blooms constantly occur in the tributary pools,and hypoxia has already been observed in 2014 in the main pool of the TGR. The declining environmental status warns us to take the increasing pool T and associated DO depression as prior issue in the Yangtze River environment protection. On the other hand,as the Yangtze is unique in world large rivers that originates from warmer and intensive solar radiation valleys to an artificial mainstream mega pool in dimming and humid basin with the storing and detention of huge heat induced from the upstream pools on water quality and local evapotranspiration,soil moisture and climate should thus deserve to be listed as key investigation. As a countermeasure,we suggest to restore the increasing thermal effect by installing pool photovoltaic power( PPV) in upstream hot-valleys. Except for inhibiting additional heat absorption,the PV in combination with the installing power and regulation advantages of the cascaded hydro power in southwest China can also produce significant renewable electricity and regulation facilities that are urgently desired by the coal dominant power system of China.
引文
[1] Zhou JJ,Zhang M. On the forefront ecological and environmental problems of current Yangtze River and restoration priorities. Environmental Protection,2017,617(45):17-24.[周建军,张曼.当前长江生态环境主要问题与修复重点.环境保护,2017,617(45):17-24.]
    [2] Zhou XD,Song C,Tang W. Cumulative effects of cascade reservoirs on water temperature from Longyang Gorge to Liujia Gorge in the Yellow River Upstream. Journal of Xi’an University of Technology,2012,28(1):1-6.[周孝德,宋策,唐旺.黄河上游龙羊峡—刘家峡河段梯级水库群水温累积影响研究.西安理工大学学报,2012,28(1):1-6.]
    [3] Xue LF,Gu HB,Cui L et al. Study on cumulative effects to water temperature caused by the hydropower cascade development in Hongshui River. Water Power,2010,36(11):5-8[薛联芳,顾洪宾,崔磊等.红水河干流梯级开发对水温累积影响的调查研究.水力发电,2010,36(11):5-8.]
    [4] Huang F,Wei L,Li L et al. Cumulative effects of water temperature by cascade hydropower stations built on upper and middle reaches of the Wujiang River. Resources and Environment in the Yangtze Basin,2009,18(4):337-342.[黄峰,魏浪,李磊等.乌江干流中上游水电梯级开发水温累积效应.长江流域资源与环境,2009,18(4):337-342.]
    [5] Liu J,Yu Z. Water quality changes and effects on fish populations in the Hanjiang River,China,following hydroelectric dam construction. Regulated Rivers,Research and Management,1992,7:359-368.
    [6] Zhong Y,Power G. Environmental impacts of hydroelectric projects on fish resources in China. Regulated Rivers:Researchand Management,1996,12:81-98.
    [7] Olden JD,Naiman RJ. Incorporating thermal regimes into environmental flows assessments:modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology,2010,55:86-107.
    [8] Webb BW,Walling DE. Long-term variability in the thermal impact of river impoundment and regulation. Applied Geography,1996,16:211-223.
    [9] Preece RM,Jones HA. The effect of Keepit Dam on the temperature regime of the Namoi River,Australia. River Research and Applications,2002,18:397-414.
    [10] Cao GJ,Hui EQ,Hu XE. Analysis of the vertical structure of water temperature in the vicinity area of Three Gorges Dam since the Three Gorges Reservoir impounds. Journal of Hydraulic Engineering,2012,43(10):1254-1259.[曹广晶,惠二青,胡兴娥.三峡水库蓄水以来近坝区水温垂向结构分析.水利学报,2012,43(10):1254-1259.]
    [11] Zhang HL. Post project environment impact assessment research on the water temperature simulation of Liujiaxia Reservoir[Dissertation]. Xi’an:Xi’an University of Technology,2008.[张华丽.刘家峡水库水温影响回顾评价研究[学位论文].西安:西安理工大学,2008.]
    [12] Guo WX,Wang HX,Xia ZQ et al. Effects of Three Gorges and Gezhouba reservoirs on river water temperature regimes.Journal of Hydroelectric Engineering,2009,28(6):182-187.[郭文献,王鸿翔,夏自强等.三峡-葛洲坝梯级水库水温影响研究.水力发电学报,2009,28(6):182-187.]
    [13] Maidment DR ed. Handbook of hydrology. New York:Mc Graw-Hill Inc,1993.
    [14] Stanford JA,Ward JV,Liss WJ et al. A general protocol for restoration of regulated rivers". US Dep. of Energy Publications,1996:43. Http://digitalcommons.unl.edu/usdoepub/43.
    [15] Ward JV,Tockner K,Uejlinger U et al. Understanding natural patterns and processes in river corridors as the basis for effective river restoration. Regul Rivers Res,2001,17:311-323.
    [16] Murchie KJ,Hair KPE,Pullen CE et al. Fish response to modified flow regimes in regulated rivers:research methods,effects and opportunities. River Research and Applications,2008,24:197-217.
    [17] Haxton TJ,Findlay CS. Meta-analysis of the impacts of water management on aquatic communities. Canadian Journal of Fisheries and Aquatic Sciences,2008,65:437-447.
    [18] Zhang YL. Effect of climate warming on lake thermal and dissolved oxygen stratifications:A review. Advances in Water Science,2015,26(1):130-139.[张运林.气候变暖对湖泊热力及溶解氧分层影响研究进展.水科学进展,2015,26(1):130-139.]
    [19] Gerten D,Lucht W,Ostberg S et al. Asynchronous exposure to global warming:freshwater resources and terrestrial ecosystems. Environ Res Lett,2013,8(3):1345-1346.
    [20] Chang JB,Chen YB,Gao Y et al. Impact of dams on fishing and mitigation measures∥Department of Environmental Impact Assessment,Ministry of Environmental Protection of the People’s Republic of China ed. Research and practice on ecology and environment protection of water resources and hydropower development project. Beijing:China Environmental Science Press,2006:239-253.[常剑波,陈永柏,高勇等.水利水电工程对鱼类的影响及减缓对策∥国家环境保护总局环境影响评价管理司主编.水利水电开发项目生态环境保护研究与实践.北京:中国环境科学出版社,2006:239-253.]
    [21] Chen DQ,Chang JB,Gu HB. Impacts of Jinsha River first stage project on ecology and environment of nature reserve and its countermeasures. Journal of Yangtze River Scientific Research Institute,2005,22(2):21-24.[陈大庆,常剑波,顾宏宾.金沙江一期工程对保护区生态环境的影响与对策.长江科学院院报,2005,22(2):21-24.]
    [22] Ligon FK,William ED,William JT. Downstream ecological effects of dams. Bioscience,1995,45(3):183-192.
    [23] Diaz RJ. Overview of hypoxia around the world. J of Environmental Quality,2001,30:275-281.
    [24] Schneider P,Hook SJ. Space observations of inland water bodies show rapid surface warming since 1985. Geophy Res Lett,2010,37:L22405. DOI:10.1029/2010GL045059.
    [25] Gameson ALH,Robertson KG. The solubility of oxygen in pure and sea-water. J Appl Chem,1955,5(9):502.
    [26] Li GS,Gao QH,Zhang XY. Analysis on the DO variation upstream and downstream of Three Gorges reservoir before and after its impoundment. Express Water Resources&Hydropower Information,2016,37(11):3-5.[李贵生,高千红,张馨月.三峡水库蓄水前后上下游溶解氧变化分析.水利水电快报,2016,37(11):3-5.]
    [27] Ministry of Environmental Protection of the People’s Republic of China. Bulletin on environmental conditions in China,2016. http://www.zhb.gov.cn/hjzl/zghjzkgb/lnzghjzkgb.[中华人民共和国环境保护部.中国环境状况公报(2007-2015),2016.]
    [28] Qiao F,Meng W,Zheng BH et al. Pollution load accounting and source analysis at Cuntan Section in main stream of Yan-gtze River. Research of Environmental Sciences,2010,23(8):979-986.[乔飞,孟伟,郑丙辉等.长江干流寸滩断面污染负荷核算及来源分析.环境科学研究,2010,23(8):979-986.]
    [29] Zhou JJ,Zhang M,Li Z. Dams altered Yangtze River phosphorus and restoration countermeasures. J Lake Sci,2018,30(4):865-880. DOI:10.18307/2018.0401.[周建军,张曼,李哲.长江上游水库改变干流磷通量、效应与修复对策,湖泊科学,2018,30(4):865-880.]
    [30] Changjiang Water Resources Commission ed. Integrated planning of the Yangtze valley(2012-2030),2013-01-04. http://www.mwr. gov. cn/xw/slyw/201702/t20170212_842973. html.[水利部长江水利委员会.长江流域综合规划(2012-2030年),2013-01-04.]
    [31] State Oceanic Administration,People’s Republic of China ed. Bulletin of China marine environmental status,2013. http://www.soa. gov. cn/zwgk/hygb/gjhyjgb/201508/t20150818_39517. html.[国家海洋局.中国海洋环境状况公报,2013.]
    [32] Penman HL. Natural evaporation from open water,hare soil and grass. Proceedings of the Royal Society of London:Series A,Mathematical and Physical Sciences,1948,193(1032):120-145.
    [33] Brock BW,Arnold NS. A spreadsheet-based(Microsoft Excel)point surface energy balance model for glacier and snow melt studies. Earth Surf Process Landforms,2000,25:649-658.
    [34] Cheng BY,Sun WG,Sun SQ et al. Study on the climatological calculation methods of total solar radiation in Chongqing area. Journal of Southwest University:Natural Science Edition,2011,33(9):94-104.[程炳岩,孙卫国,孙仕强等.重庆地区太阳总辐射的气候学计算方法研究.西南大学学报:自然科学版,2011,33(9):94-104.]
    [35] Arnfield AJ. Two decades of urban climate research:a review of turbulence,exchanges of energy and water,and the urban heat island. Int J Climatol,2003,23:1-26.
    [36] Oke TR. The urban energy balance. Progress in Physical Geography,1988,12:471-508.
    [37] Patz JA,Campbell-Lendrum D,Holloway T et al. Impact of regional climate change on human health. Nature,2005,438(7066):310-317.
    [38] Mc Michael AJ,Woodruff RE,Hales S. Climate change and human health:Present and future risks. The Lancet,2006,367(9513):859-869.
    [39] Cardelino CA,Chameides WL. Natural hydrocarbons,urbanization,and urban ozone. Journal of Geophysical Res:Atmospheres,1990,95(D9):13971-13979.
    [40] Sarrat C,Lemonsu A,Masson V et al. Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment,2006,40(10):1743-1758.
    [41] Ryu YH,Baik J,Lee SH. Effects of anthropogenic heat on ozone air quality in a megacity. Atmospheric Environment,2013,80:20-30.
    [42] Babazadeh M,Kumar P. Estimate of the urban heat island in local climate change and vulnerability assessment for air quality in Delhi. European Scientific Journal,2015.
    [43] Zhou D,Zhao S,Zhang L et al. The footprint of urban heat island effect in China. Scientific Reports,2015,5:11160.DOI:10.1038/srep11160.
    [44] Zhao L,Lee X,Smith R et al. Strong contributions of local background climate to urban heat islands. Nature,2014,511:216-219.
    [45] Chu S,Cui Y,Liu N. The path towards sustainable energy. Nature Materials,2017,16(1):16-22.
    [46] Yoshikawa K,Kawasaki H,Yoshida W et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy,2017,2:17032. DOI:10.1038/nenergy.2017.32. www.nature.com/natureenergy.
    [47] Tang X,Zhou J. A future role for cascade hydropower in the electricity system of China. Energy Policy,2012,51(4):358-363.
    [48] Han F,Song FL,Luo JS et al. Research on development of transmission power grid in 13thFive-Year Period. Electric Power,2015,4(1):11-14.[韩丰,宋福龙,罗金山等.“十三五输电发展重点研究”,中国电力,2015,4(1):11-14.]
    [49] Liu ZY,Zhang QP. Study on the development mode of national power grid of China. Proceedings of the CSEE,2013,33(7):1-10.[刘振亚,张启平.国家电网发展模式研究.中国电机工程学报,2013,33(7):1-10.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700