碱性蛋白酶在空气/水和正己烷/水界面的吸附及扩张流变的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Interfacial Adsorption and Dilatational Rheology of Alkaline Protease at Air/Water and Hexane/Water Interfaces
  • 作者:王晶 ; 张剑 ; 张越
  • 英文作者:Wang Jing;Zhang Jian;Zhang Yue;College of Chemistry and Chemical Engineering, Shanxi University;
  • 关键词:碱性蛋白酶 ; 界面张力 ; 界面流 ; 界面吸附模型
  • 英文关键词:alkaline protease;;interfacial tension;;interfacial rheology;;interfacial adsorption models
  • 中文刊名:XDYP
  • 英文刊名:China Cleaning Industry
  • 机构:山西大学化学化工学院;
  • 出版日期:2017-03-15
  • 出版单位:中国洗涤用品工业
  • 年:2017
  • 期:No.193
  • 语种:中文;
  • 页:XDYP201703009
  • 页数:12
  • CN:03
  • ISSN:11-3366/TS
  • 分类号:27-38
摘要
本文运用界面张力、界面流变及动态光散射等方法对碱性蛋白酶在空气/水和正己烷/水界面的界面行为进行了研究。另外,还运用Isofit软件对碱性蛋白酶在界面的平衡界面张力用不同的吸附模型进行了拟合。研究结果显示:碱性蛋白酶在正己烷/水界面的界面张力和界面模量要比其在空气/水界面的界面张力和界面模量都要小;碱性蛋白酶分子在正己烷/水界面上的排列较其在空气/水界面的排列紧密;碱性蛋白酶分子在正己烷/水界面上的相互作用较其在空气/水界面的大,碱性蛋白酶在正己烷/水界面形成的界面膜的弹性更大;单个碱性蛋白酶分子在正己烷/水界面所占的摩尔面积比其在空气/水界面所占的摩尔面积小。基于对碱性蛋白酶在正己烷/水和空气/水界面的吸附和界面流变的分析,我们提出了碱性蛋白酶在正己烷/水和空气/水界面的分子构象。
        The interfacial behavior of alkaline protease at the air/water and hexane/water interfaces has been investigated by using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models were used to fit the equilibrium interfacial tension of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved using Iso Fit software. The results show that the interfacial tensions and the interfacial modulus of alkaline protease are lower at the hexane/water interface than at the air/water interface. The alkaline protease molecules are arranged more tightly at hexane/water interface than at air/water interface. The interaction of alkaline protease molecules at hexane/water interface is stronger than at air/water interface, while the interfacial elasticity of alkaline protease solution is lower and the molar area of a single molecule is larger at air/water interface. Based on the synthetic analysis of the adsorption kinetics and interfacial rheological properties, the structure and mechanism of alkaline protease at the hexane-water and air-water interfaces were proposed.
引文
[1]MICHAEL R STONER,DOUGLAS A DALE,Peter J Gualfetti,et al.Protease autolysis in heavy-duty liquid detergent formulations:effects of thermodynamic stabilizers and protease inhibitors[J].Enzyme and Microbial Technology,2004,34(2):114-125.
    [2]David S.Talaga.Markov processes in single molecule fluorescence[J].Colloid Interface Sci 2007,12(6):232-241.
    [3]Jones,M.N.;Manley,P.Binding of n-alkyl sulfates to lysozyme in aqueous solution[J].J.Chem.Soc.,Faraday Trans.1979,75,1736-1744.
    [4]Griffiths,P.C.;Roe,J.A.;Bales,B.L.;et al.Fluorescence probe studies of gelatin-sodium dodecyl sulfate interactions[J].Langmuir 2000,16:8248-8254.
    [5]田中原,王亚萍,刘山.碱性蛋白酶水解豆粕制备ACE抑制肽水解条件的优化[J].天津师范大学学报(自然科学版),2016,3:64-68.
    [6]刘立品,吴桂玲,李文浩.碱性蛋白酶酶解青稞蛋白质的动力学研究[J].食品研究与开发,2016,18:19-23.
    [7]尹萌萌,贺婷婷,王超.响应面法优化短小芽孢杆菌SCU11发酵产碱性蛋白酶及关键基因转录调控分析[J].应用与环境生物学报,2016,3:371-376.
    [8]张志国,孙晓燕.碱性蛋白酶与外切蛋白酶酶解大豆分离蛋白及脱苦工艺的研究[J].粮食与油脂,2016,8:53-57.
    [9]郝鲁江,卢晓平,许艳蕊.角蛋白酶/碱性蛋白酶制备羽毛蛋白粉的工艺研究[J].中国家禽,2016,1:32-36.
    [10]Maldonado-Valderrama,J.;Patino,J.M.R.Interfacial rheology of protein-surfactant mixtures[J].Curr.Opin.Colloid Interface Sci.2010,15,271-282.
    [11]VincentPradines;Valentin B.Fainerman;Eugene V.Aksenenko.Ad sorption of Protein-Surfactant Complexes at the Water/Oil Interface[J].Langmuir2011,27(3),965-971.
    [12]Ao,M.;Xu,G.;Kang,W.;et al.Surface rheological behavior of gelatin/ionic liquid-type imidazolium gemini surfactant mixed systems[J].Soft Matter 2011,7,1199-1206.
    [13]Maldonado-Valderrama,J.Wilde,P.J.;Morris,V.J.;etal,R.Effect of Gastric Conditions onβ-Lactoglobulin Interfacial Networks:Influence of the Oil Phase on Protein Structure[J].Langmuir 2010,26(20):15901-15908.
    [14]Maldonado-Valderrama,J.;Gunning,A.P.Ridout,M.J.;et al.The effect of physiological conditions on the surface structure of proteins:Setting the scene for human digestion of emulsions[J].Eur.Phys.J.E 2009,30(2):165-174.
    [15]Maldonado-Valderrama,J.;Woodward,N.C.;Gunning,A.P.;etal.Interfacial Characterization ofβ-Lactoglobulin Networks:Displacement by Bile Salts[J].Langmuir2008,24(13),6759-6767.
    [16]JuliaMaldonado-Valderramaa;Juan M.Rodriguez Patino.Interfacial rheology of protein-surfactant mixtures[J].Colloid Interface Sci.2010,15(4),271-282.
    [17]YuhongYang;Cedric Dicko;Colin D.Bain.Behavior of silk protein at the air-water interface[J].Soft Matter,2012,8:9705-9712.
    [18]B.A.Noskov;A.A.Mikhailovskaya;S.-Y.Lin.Bovine Serum Albumin Unfolding at the Air/Water Interface as Studied by Dilational Surface Rheology[J].Langmuir2010,26(22):17225-17231.
    [19]ErikM.Freer,Kang Sub Yim,Gerald G.Fuller.Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface:Comparison of Shear and Dilatation Deformation[J].Phys.Chem.B 2004,108:3835-3844.
    [20]DavidAaron Nieto-Alvarez;Luis S Zamudio-Rivera;Erick E Luna-Rojero.Adsorption of Zwitterionic Surfactant on Limestone Measured with HighPerformance Liquid Chromatography:Micelle-Vesicle Influence[J].Langmuir 2014,30,12243-12249
    [21]ZIataGrenoble;Steven Baldelli.Adsorption of the Cationic Surfactant Benzyldimethylhexadecylammonium Chloride at the Silica-Water Interface and Metal Salt Effects on the Adsorption Kinetics[J].Phys.Chem.B 2013,117,259-272.
    [22]VBFainerman;R Miller;R Wu..stneck.Adsorption Isotherm and Surface Tension Equation for a Surfactant with Changing Partial Molar Area[J].Phys.Chem.1996,100:7669-7675.
    [23]VincentPradines;Valentin B.Fainerman;Eugene V.Aksenenko.Adsorption of Protein-Surfactant Complexes at the Water/Oil Interface[J].Langmuir2011,27(3),965-971.
    [24]B.C.Tripp;J.J.Magda;J.D.Andrade.Adsorption of Globular Proteins at the Air/Water Interface as Measured via Dynamic Surface Tension:Concentration Dependence,Mass-Transfer Considerations,and Adsorption Kinetics[J].Colloid Interface Sci.1995,173(1):16-27.
    [25]Y.Y.Zuo;M.Ding,A.Bateni;M.Hoorfar;et al.Improvement of interfacial tension measurement using a captive bubble in conjunction with axisymmetric drop shape analysis(ADSA)[J].Colloids Surf.A 2004,250(1-3):233-246.
    [26]S.A.Zholob;A.V.Makievski;R.Miller;etal.Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry[J].Colloid Interface Sci.2007,(134-135):322-329.
    [27]http://thomascat.info/Scientific/AdSo/AdSo.htm.
    [28]A.L Deramos;R.A.Redner;R.L Cerro.Surface tension from pendant drop curvature[J].Langmuir,1993,9(12):3691-3694.
    [29]http://saf.chem.ox.ac.uk.
    [30]Libero,Liggieri.A diffusion-based approach to mixed adsorption kinetics[J].Elsevier,1996,114(20):351-359.
    [31]V.B.Fainerman;D.Mobius;R.Miller(Eds.).SurfactantsChemistry,Interfacial Properties and Application,Studies in Interface Science[J].Elsevier 2001,13:99-188.
    [32]V.B.Fainerman;E.H.Lucassen-Reynders;R.Miller.Adsorption of surfactants and proteins at fluid interfaces[J].Colloids and Surfaces A 1998,143:141-165.
    [33]V.B.Fainerman.Surface and colloid science.Encyclopedia of surface and colloid science,2009,2:53-61.
    [34]Kotsmar,C.;Pradines,V.;Alahverdjieva,V.S.;etal.Thermodynamics,adsorption kinetics and rheology of mixed protein-surfactant interfacial layers[J].Colloid Interface Sci.2009,150(1):41-54.
    [35]Erni,P.;Fischer,P.;Heyer,P.;etal.Rheology of gas/liquid and liquid/liquid interfaces with aqueous and biopolymer subphases[J].Colloid Polym.Sci.2004,129:16-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700