紫化茶树UDP-糖基转移酶启动子的克隆及其生物信息学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and bioinformatical analysis of the UDP-glycosyltransferases promoter in purple shoots of tea plant
  • 作者:唐秀华 ; 陈志丹 ; 陈祖枝 ; 林子琪 ; 曹士先 ; 孙威江 ; 谢凤
  • 英文作者:TANG Xiuhua;CHEN Zhidan;CHEN Zuzhi;LIN Ziqi;CAO Shixian;SUN Weijiang;XIE Feng;College of Horticulture, Fujian Agriculture and Forestry University;College of Tea, Fujian Agriculture and Forestry University;Tea Industry Engineering Technology Research Center of Fujian Province;Tea Industry Technology Development Base of Fujian Province;Fu′an Agricultural Bureau;Wuyi Star Tea Industrial Company Limited;
  • 关键词:紫化茶树 ; UDP-糖基转移酶基因 ; 启动子 ; 生物信息学分析
  • 英文关键词:purple shoots of tea plant;;UDP-glycosyltransferases gene;;promoter;;bioinformatics analysis
  • 中文刊名:FJND
  • 英文刊名:Journal of Fujian Agriculture and Forestry University(Natural Science Edition)
  • 机构:福建农林大学园艺学院;福建农林大学安溪茶学院;福建省茶产业工程技术研究中心;福建茶产业技术开发基地;福安市农业局;武夷星茶业有限公司;
  • 出版日期:2019-05-18
  • 出版单位:福建农林大学学报(自然科学版)
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金面上项目(31770732);; 福建省区域发展项目(2017N3012);; 福建省科技重大专题项目(2017NZ002-1)
  • 语种:中文;
  • 页:FJND201903005
  • 页数:6
  • CN:03
  • ISSN:35-1255/S
  • 分类号:33-38
摘要
以紫化茶树武夷奇种C18的叶片为材料,采用染色体步移技术获得该材料的UDP-糖基转移酶(UDPG)基因5′端上游启动子序列大小为902 bp,利用软件进行生物信息学分析.结果表明,该调控序列含有启动子核心元件TATA-box、CAAT-motif以及多个光响应元件(GT1-motif、GATA-motif等)、胚乳特异性表达元件(GCN4-motif、Skn-1-motif)、水杨酸响应元件(TCA-element)等特殊顺式作用元件.
        Genomewalking method was used to clone the promoter sequence of UDP-glycosyltransferases(UDPG) gene from the purple bud and leaf of tea tree sinensis Wuyiqizhong C18, and finally a 902 bp fragment flanking 5′-upstream of UDPG was obtained. Bioinformatics analysis by software showed that the promoter of UDPG contains core promoter elements of TATA-box and CAAT-motif, several light responsive elements(CT1-motif, GATA-motif, et al), endosperm expression elements(GCN4-motif, Skn-1-motif, et al), and a salicylic acid responsiveness element of TCA-element.
引文
[1] 宛晓春.茶叶生物化学[M].北京:中国农业出版社,2003.
    [2] 唐秀华,孙威江,唐琴.紫化茶树生理生化及其花青素调控机理研究进展[J].天然产物研究与开发,2017,29(6):1 077-1 083.
    [3] 唐秀华,周喆,唐琴,等.茶树CsPAL3基因cDNA全长克隆及其表达分析[J].茶叶科学,2018,38(1):33-42.
    [4] 王惠聪,黄旭明,胡桂兵,等.荔枝果皮花青苷合成与相关酶的关系研究[J].中国农业科学,2004,37(12):2 028-2 032.
    [5] 田艳维.茶树L组UDPG-糖基转移酶基因的克隆及原核表达[D].合肥:安徽农业大学,2012.
    [6] VOGT T,JONES P.Glycosyltransferases in plant natural product synthesis:characterization of a supergene family [J].Trends in Plant Science,2000,5(9):380-386.
    [7] BUTLER J E,KADONAGA J T.The RNA polymerase Ⅱ core promoter:a key component in the regulation of gene expression [J].Genes & Development,2002,16(20):2 583-2 592.
    [8] 聂丽娜,夏兰琴,徐兆师.植物基因启动子的克隆及其功能研究进展[J].植物遗传资源学报,2008,9(3):385-391.
    [9] 王颖,麦维军,梁承邺,等.高等植物启动子的研究进展[J].西北植物学报,2003,23(11):2 040-2 048.
    [10] 文添龙,刘雪梅,冀亚萍,等.高等植物胁迫诱导型启动子的研究进展[J].西北植物学报,2014,34(1):206-214.
    [11] PELLEGRINESCHI A,REYNOLDS M,PACHECO M,et al.Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions [J].Genome,2004,47(3):493-500.
    [12] 张建军,文国琴,刘震.拟南芥糖基转移酶基因UGT71C5启动子的克隆和功能分析[J].四川大学学报(自然科学版),2011,48(4):955-960.
    [13] 郝迪萩,赵琳,陈李淼,等.克隆启动子方法的比较及应用[J].东北农业大学学报,2010,41(3):154-160.
    [14] LIN Y L,LAI Z X.Superoxide dismutase multigene family in longan somatic embryos:a comparison of Cu Zn-SOD,Fe-SOD,and Mn-SOD gene structure,splicing,phylogeny,and expression [J].Molecular Breeding,2013,32(3):595-615.
    [15] 练从龙,卢秉国,赖钟雄,等.荔枝古树胚性愈伤组织LcCu/Zn-SOD3基因启动子的克隆及功能验证[J].西北植物学报,2015,35(1):16-22.
    [16] 杨晓娜,赵昶灵,李云,等.启动子序列克隆和功能分析方法的研究进展[J].云南农业大学学报(自然科学版),2010,25(2):283-290.
    [17] 金琦芳,陈志丹,孙威江,等.茶树CsANS基因及其启动子的克隆与生物信息学分析[J].茶叶科学,2016,36(2):219-228.
    [18] XU G,MA H,NEI M,et al.Evolution of F-box genes in plants:different modes of sequence divergence and their relationships with functional diversification [J].Proc Natl Acad Sci USA,2009,106(3):835-840.
    [19] JONES P,MESSNER B,NAKAJIMA J I,et al.UGT73C6 and UGT78D1,glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana [J].Journal of Biological Chemistry,2003,278:43 910-43 918.
    [20] ONO E,YU H,HORIKAWA M,et al.Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera) [J].The Plant Cell,2010,22(8):2 856-2 871.
    [21] HALL D,YUAN X X,MURATA J,et al.Molecular cloning and biochemical characterization of the UDP-glucose:flavonoid 3-O-glucosyltransferase from Concord grape (Vitis labrusca) [J].Phytochemistry,2012,74(3):90-99.
    [22] HALL D,KIM K H,LUCA V D.Molecular cloning and biochemical characterization of three concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases [J].Planta,2011,234:1 201-1 214.
    [23] GRUBB C D,ZIPP B J,LUDWIGMüLLER J,et al.Arabidopsis glucosyltransferase UGT74B1 functions inglucosinolate biosynthesis and auxin homeostasis [J].The Plant Journal,2004,40:893-908.
    [24] JACKSON R G,KOWALCZYK M,LI Y,et al.Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid:phenotypic characterisation of transgenic lines [J].The Plant Journal,2002,32(4):573-583.
    [25] 郑晓瑜,郭晋艳,张毅,等.植物非生物胁迫诱导启动子顺式作用元件的研究方法[J].植物生理学报,2011,47(2):129-135.
    [26] 王婧,李冰,刘翠翠,等.启动子结构和功能研究进展[J].生物技术通报,2014,8(1):40-45.
    [27] 王志新,赵琳,李文滨.植物诱导型启动子的研究进展[J].大豆科技,2011(3):5-9.
    [28] 周云.水稻胚乳特异强表达基因的筛选及其启动子功能的初步分析[D].福州:福建农林大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700