12~18 GHz GaAs MMIC低噪声放大器设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of 12-18 GHz MMIC Low Noise Amplifier in GaAs pHEMT process
  • 作者:孙博文 ; 王磊 ; 陈庆 ; 方堃 ; 杨漫菲
  • 英文作者:SUN Bowen;WANG Lei;CHEN Qing;FANG Kun;YANG Manfei;School of Electronic Engineering,University of Electronic Science and Technology of China;
  • 关键词:Ku波段 ; 毫米波单片集成电路 ; 低噪声放大器 ; GaAs工艺
  • 英文关键词:Ku band;;Monolithic Microwave Integrated Circuit;;Low Noise Amplifier;;GaAs process
  • 中文刊名:XXYD
  • 英文刊名:Journal of Terahertz Science and Electronic Information Technology
  • 机构:电子科技大学电子工程学院;
  • 出版日期:2019-04-25
  • 出版单位:太赫兹科学与电子信息学报
  • 年:2019
  • 期:v.17
  • 语种:中文;
  • 页:XXYD201902035
  • 页数:4
  • CN:02
  • ISSN:51-1746/TN
  • 分类号:173-176
摘要
采用GaAs工艺设计了一个12~18GHz毫米波单片集成电路(MMIC)低噪声放大器(LNA)。采用三级单电源供电放大结构,运用最小噪声匹配设计、共轭匹配技术和负反馈结构,同时满足了噪声系数、增益平坦度和输出功率等要求。仿真表明:在12~18GHz的工作频带内,噪声系数为1.15~1.41dB,增益为27.9~29.1dB,输出1dB压缩点达到15dBm,输入、输出电压驻波比(VSWR)系数小于1.72。
        This paper presents a 12-18 GHz Low Noise Amplifier(LNA) Monolithic Microwave Integrated Circuit(MMIC) in GaAs process, and the design of this LNA layout is verified in ADS EM simulation. This LNA circuit uses single DC power supply. In the design of matching network, the minimum noise matching design, conjugate matching technology and the negative feedback structure are utilized to meet the requirement of low noise, gain flatness and power output. The simulation indicates that in the band of 12-18 GHz, the Noise Figure(NF) of LNA varies from 1.15 dB to 1.41 dB, and power transmission gain is 27.9-29.1 dB, the 1 dB compression power point is 15 dBm, and the Voltage Standing Wave Ratio(VSWR) of input and output is less than 1.72.
引文
[1]杨自强.Ka频段接收机部件单元单片集成电路设计[D].成都:电子科技大学,2008.(YANG Ziqiang.Design of Kaband receiver components monolithic integrated circuits[D].Chengdu,China:University of Electronic Science and Technology of China,2008.)
    [2]AKGIRAY A H,WEINREB S,LEBLANC R,et al.Noise measurements of discrete HEMT transistors and application to wideband very low-noise amplifiers[J].IEEE Transactions on Microwave Theory&Techniques,2013,61(61):3285-3297.
    [3]张姗姗.K波段MMIC低噪声放大器与双向混频器的研究设计[D].西安:西安电子科技大学,2014.(ZHANG Shanshan A study and design of low noise amplifier and bidirectional mixer MMIC in K-band[D].Xi’an,China:Xidian University2014.)
    [4]韩玉鹏.T/R组件的MMIC设计技术研究[D].西安:西安电子科技大学,2014.(HANYupeng.ResearchonaT/R module based on MMIC[D]. Xi’an,China:Xidian University, 2014.)
    [5]李俊生,蒙林,张德智.X波段高功率T/R组件的设计与制作[J].现代电子技术,2009,32(19):59-61.(LIJunsheng,MENG Lin,ZHANG Dezhi. Design and manufacture techniques of X-band high power T/R module[J]. Modern Electronic Technology, 2009,32(19):59-61.)
    [6]杨光.微波毫米波超宽带低噪声放大单片技术研究[D].成都:电子科技大学,2009.(YANGGuang.Researchon microwaveandmillimeterwaveultrabroadbandlownoiseamplificationmonolithictechnology[D].Chengdu,China:University of Electronic Science and Technology of China, 2009.)
    [7]段磊.宽带单片微波低噪声放大器的设计[D].西安:西安电子科技大学,2013.(DUANLei.Designofbroadband monolithic LNA[D]. Xi’an,China:Xidian University, 2013.)
    [8]TESSMANN A,LEUTHER A,MASSLER H,et al. Metamorphic H-band low-noise amplifier MMICs[C]//2007 IEEE/MTT-S International Microwave Symposium. Honolulu,HI,USA:IEEE, 2007:353–356.
    [9]KAWASAKI S,SEITA H,KAWASHIMA M,et al. A high-gain and low-noise MMIC amplifier module for a Ku-band compact active integrated antenna[C]//2010 Asia-Pacific Microwave Conference. Yokohama,Japan:IEEE, 2010:1497-1500.
    [10]UCHIDA H,TAKATSU S,NAKAHARA K,et al. Ka-band multistage MMIC low-noise amplifier using source inductors with different values for each stage[J]. IEEE Microwave&Guided Wave Letters, 1999,9(2):71-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700