非综合征型唇腭裂非编码区变异功能研究策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research strategy on the function of non-coding region variations in non-syndromic orofacial clefts
  • 作者:殷斌 ; 石冰 ; 贾仲林
  • 英文作者:YIN Bin;SHI Bing;JIA Zhonglin;
  • 关键词:非综合征型唇腭裂 ; 非编码区变异 ; 功能研究
  • 中文刊名:KQSW
  • 英文刊名:Oral Biomedicine
  • 机构:口腔疾病研究国家重点实验室国家口腔疾病临床医学研究中心四川大学华西口腔医院唇腭裂外科;
  • 出版日期:2019-03-25
  • 出版单位:口腔生物医学
  • 年:2019
  • 期:v.10
  • 基金:国家重点研发计划重点专项课题(2017YFC0840100,2017YFC0840107);; 国家自然科学基金面上项目(81271118);; 国家自然基金青年科学基金项目(81600849)
  • 语种:中文;
  • 页:KQSW201901010
  • 页数:6
  • CN:01
  • ISSN:32-1813/R
  • 分类号:41-46
摘要
非综合征型唇腭裂是一种常见的先天畸形,其发病机制复杂,常包含遗传和环境两方面的因素。随着全基因组关联研究的广泛开展,针对非综合征型唇腭裂的遗传学研究取得了较为丰硕的成果,发现了大量候选突变位点。但这些突变大多位于易感基因的非编码区域,且仅拥有统计学上的意义,需要后续的功能研究来验证这些突变的真实致病性。目前唇腭裂编码区变异的研究方法已较为成熟,但由于致病机制的差异,该法对研究非编码区变异将不完全适用。因此,本文将从大数据利用、软件功能预测及体内外功能实验三方面对非编码区变异后续功能研究进行介绍,为将来更多唇腭裂非编码区突变研究提供参考。
        
引文
[1] Fan D, Wu S, Liu L, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J/OL]. Oncotarget,2018,9(17):13981-13990[2018-09-11]. http://dx.doi.org/10.18632/oncotarget.24238.
    [2] Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet,2009,41(4):473-477.
    [3] Beaty TH, Taub MA, Scott AF, et al. Confirming genes influenc-ing risk to cleft lip withwithout cleft palate in a case-parent trio study[J]. Hum Genet,2013,132(7):771-781.
    [4] Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J/OL]. Nat Commun,2017,8:14364[2018-09-11]. http://dx.doi.org/10.1038/ncomms14364.
    [5] Leslie EJ, Liu H, Carlson JC, et al. A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3[J/OL]. Am J Hum Genet,2016,98(4):744-754[2018-09-11]. http://dx.doi.org/10.1016/j.ajhg.2016.02.014.
    [6] Leslie EJ, Carlson JC, Shaffer JR, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet,2016,25(13):2862-2872.
    [7] Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet,2010,42(6):525-529.
    [8] Fonseca RF, de Carvalho FM, Poletta FA, et al. Family-based genome-wide association study in Patagonia confirms the association of the DMD locus and cleft lip and palate[J/OL]. Eur J Oral Sci,2015,123(5):381-384[2018-09-11]. http://dx.doi.org/10.1111/eos.12212.
    [9] Wolf ZT, Brand HA, Shaffer JR, et al. Genome-wide association studies in dogs and humans identify ADAMTS20 as a risk variant for cleft lip and palate[J/OL]. PLoS Genet,2015,11(3):e1005059[2018-09-11]. http://dx.doi.org/10.1371/journal.pgen.1005059.
    [10] Leslie EJ, Carlson JC, Shaffer JR, et al. Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate[J/OL]. Hum Genet,2017,136(3):275-286[2018-09-11]. http://dx.doi.org/10.1007/s00439-016-1754-7.
    [11] Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr,2009,155(6):909-913.
    [12] Camargo M, Rivera D, Moreno L, et al. GWAS reveals new recessive loci associated with non-syndromic facial clefting[J]. Eur J Med Genet,2012,55(10):510-514.
    [13] Ludwig KU, Mangold E, Herms S, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet,2012,44(9):968-971.
    [14] Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet,2010,42(1):24-26.
    [15] Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J/OL]. Nat Commun,2015,6:6414[2018-09-11]. http://dx.doi.org/10.1038/ncomms7414.
    [16] Younkin SG, Scharpf RB, Schwender H, et al. A genome-wide study of de novo deletions identifies a candidate locus for non-syndromic isolated cleft lip/palate risk[J/OL]. BMC Genet,2014,15:24[2018-09-11]. http://dx.doi.org/10.1186/1471-2156-15-24.
    [17] Eshete MA, Liu H, Li M, et al. Loss-of-Function GRHL3 Varia-nts Detected in African Patients with Isolated Cleft Palate[J/OL]. J Dent Res,2018,97(1):41-48[2018-09-11]. http://dx.doi.org/10.1177/0022034517729819.
    [18] Mues G, Tardivel A, Willen L, et al. Functional analysis of Ectodysplasin-A mutations causing selective tooth agenesis[J]. Eur J Hum Genet,2010,18(1):19-25.
    [19] Shen W, Wang Y, Liu Y, et al. Functional Study of Ectodyspla-sin-AMutations Causing Non-Syndromic Tooth Agenesis[J/OL]. PLoS One,2016,11(5):e0154884[2018-09-11]. http://dx.doi.org/10.1371/journal.pone.0154884.
    [20] Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease[J]. Nat Rev Genet,2011,12(10):683-691.
    [21] Makrythanasis P, Antonarakis SE. Pathogenic variants in non-protein-coding sequences[J]. Clin Genet,2013,84(5):422-428.
    [22] Zhu Y, Tazearslan C, Suh Y. Challenges and progress in interpretation of non-coding genetic variants associated with human disease[J/OL]. Exp Biol Med (Maywood),2017,242(13):1325-1334[2018-09-11]. http://dx.doi.org/10.1177/1535370217713750.
    [23] Li MJ, Yan B, Sham PC, et al. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression[J]. Brief Bioinform,2015,16(3):393-412.
    [24] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome[J]. Nature,2012,489(7414):57-74.
    [25] Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome[J/OL]. Nature,2012,489(7414):75-82[2018-09-11]. http://dx.doi.org/10.1038/nature11232.
    [26] Qu H, Fang X. A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project[J/OL]. Genomics Proteomics Bioinformatics,2013,11(3):135-141[2018-09-11]. http://dx.doi.org/10.1016/j.gpb.2013.05.001.
    [27] Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. The NIH Roadmap Epigenomics Mapping Consortium[J]. Nat Biotechnol,2010,28(10):1045-1048.
    [28] Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes[J/OL]. Nature,2015,518(7539):317-330[2018-09-11]. http://dx.doi.org/10.1038/nature14248.
    [29] Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB[J]. Genome Res,2012,22(9):1790-1797.
    [30] Ritchie GR, Dunham I, Zeggini E, et al. Functional annotation of noncoding sequence variants[J/OL]. Nat Methods,2014,11(3):294-296[2018-09-11]. http://dx.doi.org/10.1038/nmeth.2832.
    [31] Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants[J/OL]. Nat Genet,2014,46(3):310-315[2018-09-11]. http://dx.doi.org/10.1038/ng.2892.
    [32] Khurana E, Fu Y, Colonna V, et al. Integrative annotation of variants from 1092 humans: application to cancer genomics[J/OL]. Science,2013,342(6154):1235587[2018-09-11]. http://dx.doi.org/10.1126/science.1235587.
    [33] Shihab HA, Rogers MF, Gough J, et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation[J]. Bioinformatics,2015,31(10):1536-1543.
    [34] Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies[J]. Genome Res,2010,20(1):110-121.
    [35] Drubay D, Gautheret D, Michiels S. A benchmark study of scoring methods for non-coding mutations[J/OL]. Bioinformatics,2018,34(10):1635-1641[2018-09-11]. http://dx.doi.org/10.1093/bioinformatics/bty008.
    [36] Natarajan A, Yardimci GG, Sheffield NC, et al. Predicting cell-type-specific gene expression from regions of open chromatin[J/OL]. Genome Res,2012,22(9):1711-1722[2018-09-11]. http://dx.doi.org/10.1101/gr.135129.111.
    [37] Dong X, Greven MC, Kundaje A, et al. Modeling gene expression using chromatin features in various cellular contexts[J/OL]. Genome Biol,2012,13(9):R53[2018-09-11]. http://dx.doi.org/10.1186/gb-2012-13-9-r53.
    [38] Phornphutkul C, Anikster Y, Huizing M, et al. The promoter of a lysosomal membrane transporter gene, CTNS, binds Sp-1, shares sequences with the promoter of an adjacent gene, CARKL, and causes cystinosis if mutated in a critical region[J]. Am J Hum Genet,2001,69(4):712-721.
    [39] Niimi T, Munakata M, Keck-Waggoner CL, et al. A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma[J]. Am J Hum Genet,2002,70(3):718-725.
    [40] Hu XZ, Lipsky RH, Zhu G, et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder[J]. Am J Hum Genet,2006,78(5):815-826.
    [41] Theuns J, Brouwers N, Engelborghs S, et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease[J]. Am J Hum Genet,2006,78(6):936-946.
    [42] Tuupanen S, Turunen M, Lehtonen R, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling[J/OL]. Nat Genet,2009,41(8):885-890[2018-09-11]. http://dx.doi.org/10.1038/ng.406.
    [43] Cowper-Sal lari R, Zhang X, Wright JB, et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression[J/OL]. Nat Genet,2012,44(11):1191-1198[2018-09-11]. http://dx.doi.org/10.1038/ng.2416.
    [44] Vernes SC, Spiteri E, Nicod J, et al. High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2,a gene mutated in speech and language disorders[J/OL]. Am J Hum Genet,2007,81(6):1232-1250[2018-09-11]. http://dx.doi.org/10.1086/522238.
    [45] Simonis M, Kooren J, de Laat W. An evaluation of 3C-based methods to capture DNA interactions[J/OL]. Nat Methods,2007,4(11):895-901[2018-09-11]. http://dx.doi.org/10.1038/nmeth1114.
    [46] Dekker J. The three &2018-09-11039;C&2018-09-11039; s of chromosome conformation capture: controls,controls,controls[J/OL]. Nat Methods,2006,3(1):17-21[2018-09-11]. http://dx.doi.org/10.1038/nmeth823.
    [47] Zhao Z, Tavoosidana G, Sjolinder M, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions[J]. Nat Genet,2006,38(11):1341-1347.
    [48] van Berkum NL, Dekker J. Determining spatial chromatin organization of large genomic regions using 5C technology[J]. Methods Mol Biol,2009,567:189-213.
    [49] Gavrilov A, Eivazova E, Priozhkova I, et al. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification[J]. Methods Mol Biol,2009,567:171-188.
    [50] Rao SS, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J/OL]. Cell,2014,159(7):1665-1680[2018-09-11]. http://dx.doi.org/10.1016/j.cell.2014.11.021.
    [51] Smemo S, Tena JJ, Kim KH, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3[J]. Nature,2014,507(7492):371-375.
    [52] Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases[J/OL]. Nat Rev Genet,2010,11(9):636-646[2018-09-11]. http://dx.doi.org/10.1038/nrg2842.
    [53] Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol,2011,29(2):143-148.
    [54] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J/OL]. Science,2013,339(6121):819-823[2018-09-11]. http://dx.doi.org/10.1126/science.1231143.
    [55] Andrey G, Spielmann M. CRISPR/Cas9 Genome Editing in Embryonic Stem Cells[J/OL]. Methods Mol Biol,2017,1468:221-234[2018-09-11]. http://dx.doi.org/10.1007/978-1-4939-4035-6_15.
    [56] Zhang F, Lupski JR. Non-coding genetic variants in human disease[J/OL]. Hum Mol Genet,2015,24(R1):R102-R110[2018-09-11]. http://dx.doi.org/10.1093/hmg/ddv259.
    [57] Sareen D, O’Rourke JG, Meera P, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion[J/OL]. Sci Transl Med,2013,5(208):208ra149[2018-09-11]. http://dx.doi.org/10.1126/scitransl-med.3007529.
    [58] Donnelly CJ, Zhang PW, Pham JT, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention[J]. Neuron,2013,80(2):415-428.
    [59] Ko E, Seo HW, Jung ES, et al. The TERT promoter SNP rs2853669 decreases E2F1 transcription factor binding and increases mortality and recurrence risks in liver cancer[J/OL]. Oncotarget,2016,7(1):684-699[2018-09-11]. http://dx.doi.org/10.18632/oncotarget.6331.
    [60] Gong J, Tian J, Lou J, et al. A functional polymorphism in lnc-LAMC2-1:1 confers risk of colorectal cancer by affecting miRNA binding[J/OL]. Carcinogenesis,2016,37(5):443-451[2018-09-11]. http://dx.doi.org/10.1093/carcin/bgw024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700