中国燃煤部门大气汞排放协同控制效果评估及未来预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of co-benefits on atmospheric mercury emission control for coal combustion in China and future projection
  • 作者:惠霂霖 ; 张磊 ; 王书肖 ; 蔡思翌 ; 赵斌
  • 英文作者:HUI Mulin;ZHANG Lei;WANG Shuxiao;CAI Siyi;ZHAO Bin;School of Environment,State Key Joint Laboratory of Environment Simulation and Pollution Control,Tsinghua University;State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex;
  • 关键词:燃煤部门 ; 大气汞排放控制 ; “大气十条” ; 关于汞的水俣公约
  • 英文关键词:coal combustion;;atmospheric mercury emission control;;"Ten Measures";;Minamata Convention on Mercury
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:清华大学环境学院环境模拟与污染控制国家重点联合实验室;国家环境保护大气复合污染来源与控制重点实验室;
  • 出版日期:2016-06-23 15:43
  • 出版单位:环境科学学报
  • 年:2017
  • 期:v.37
  • 基金:美国自然资源保护协会项目;; 国家自然科学基金(No.21307070)~~
  • 语种:中文;
  • 页:HJXX201701002
  • 页数:12
  • CN:01
  • ISSN:11-1843/X
  • 分类号:14-25
摘要
汞污染已成为一个全球性的环境问题,我国是世界上大气汞排放量最大的国家,在批准《关于汞的水俣公约》之后,我国的汞污染控制面临严峻的挑战.燃煤部门是我国大气汞排放的第一大部门,也是履约的重点部门.本研究建立了我国燃煤部门2010年和2012年的大气汞排放清单,评估了"大气污染防治行动计划"("大气十条")对燃煤部门大气汞排放的协同控制效果.同时,使用情景分析法,对2020年和2030年燃煤部门的大气汞排放进行了预测,分析了未来不同控制措施的减排效果.结果表明,2010年中国燃煤电厂、燃煤工业锅炉和民用燃煤炉灶的大气汞排放量的最佳估计值分别为100.0、72.5和18.0 t."大气十条"的实施可使我国燃煤部门到2017年比2012年减少92.5 t的大气汞排放.能源结构的调整、洗煤比例的提高和除尘设备的升级改造对于大气汞的减排效果最显著.在最佳估计情景下,2020年和2030年燃煤部门大气汞排放量分别为128.5和80.0 t,与2010年相比分别降低了33%和58%;在最严格控制情景下,2020年和2030年燃煤部门大气汞的排放量分别为103.2和50.9 t,相较2010年分别下降了46%和73%.
        Mercury pollution has become a global environmental issue.China is the largest anthropogenic emitter of atmospheric mercury. After ratifying the Minamata Convention on Mercury,China faces substantial challenges on mercury emission control. Coal combustion is the largest atmospheric mercury emission sector as well as the key sector for fulfilling Convention obligations. In this study,we developed the atmospheric mercury emission inventories for coal-fired power plants( CFPPs),coal-fired industrial boilers( CFIBs) and coal-fired residential stoves( CFRSs) in 2010 and 2012,evaluated the cobenefit of atmospheric mercury emission reduction associated with actions already conducted to comply with the Action Plan for Prevention and Control of Air Pollution( "Ten Measures"),and predicted the atmospheric mercury emission from the coal combustion sector by 2020 and 2030 based on scenario analysis to evaluate the effectiveness of different control measures in the future. The best estimates for atmospheric mercury emission from CFPPs,CFIBs and CFRSs in 2010 are 100.0 t and 72.5 t and 18.0 t,respectively. The implementation of the"Ten Measures"will reduce atmospheric mercury emission from the coal combustion sector by 92.5 t from 2012 to 2017. Adjustment of energy structure,increase of coal washing application rate and retrofit of dust collectors have the most significant co-benefit on atmospheric mercury emission reduction. Under the best estimate scenario,the mercury emission from the coal combustion sector in 2020 and 2030 will be 128.5 t and 80.0 t,respectively,33% and 58% lower than that in 2010; and under the most stringent scenario,the mercury emission from the coal combustion sector in 2020 and 2030 will be 103.2 t and 50.9 t,respectively,46% and 73% lower than that in 2010.
引文
Ancora M P,Zhang L,Wang S X,et al.2016.Meeting Minamata:costeffective compliance options for atmospheric mercury control in Chinese coal-fired power plants[J].Energy Policy,88:485-494
    Arctic Monitoring and Assessment Programme(AMAP)/United Nations Environment Programme(UNEP).2013.Technical Background Report for the Global Mercury Assessment 2013[R].Geneva,Switzerland:UNEP Chemicals Branch
    陈进生,袁东星,李权龙,等.2008.燃煤烟气净化设施对汞排放特性的影响[J].中国电机工程学报,28(2):72-76
    陈义珍,柴发合,薛志钢,等.2006.燃煤火电厂汞排放因子测试设计及案例分析[J].环境科学研究,19(2):49-52
    Chen L,Duan Y,Zhuo Y,et al.2007.Mercury transformation across particulate control devices in six power plants of China:The co-effect of chlorine and ash composition[J].Fuel,86:603-610
    Cheng C M,Hack P,Chu P,et al.2009.Partitioning of mercury,arsenic,selenium,boron,and chloride in a full-scale coal combustion process equipped with selective catalytic reduction,electrostatic precipitation,and flue gas desulfurization systems[J].Energy and Fuels,23:4805-4816
    Duan Y,Cao Y,Kellie S,et al.2005.In-situ measurement and distribution of flue gas mercury for a utility PC boiler system[J].Journal of Southeast University(English Edition),21:53-57
    Goodarzi F.2004.Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals[J].Journal of Environmental Monitoring,6:792-798
    《锅炉大气污染物排放标准》编制组.2013.《锅炉大气污染物排放标准》(征求意见稿)编制说明[R].北京:《锅炉大气污染物排放标准》编制组
    郭欣,郑楚光,贾小红,等.2004.300MW煤粉锅炉烟气中汞形态分析的实验研究[J].中国电机工程学报,24(6):185-188
    国家发展和改革委员会能源研究所课题组.2009.中国2050年低碳发展之路[M].北京:科学出版社
    国务院.2013.大气污染防治行动计划[OL].北京:国务院.2016-12-01.http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm
    He B,Cao Y,Romero C E,et al.2007.Comparison and validation of OHMand SCEM measurements for a full-scale coal-fired power plant[J].Chemical Engineering Communication,194:1596-1607
    环境保护部.2011.GB13223-2011.火电厂大气污染物排放标准[S].北京:中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会
    环境保护部.2014.GB13271-2014.锅炉大气污染物排放标准[S].北京:中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会
    Ito S,Yokoyama T,Asakura K.2006.Emissions of mercury and other trace elements from coal-fired power plants in Japan[J].Science of the Total Environment,368:397-402
    Kellie S,Duan Y,Cao Y,et al.2004.Mercury emissions from a 100-MWwall-fired boiler as measured by semicontinuous mercury monitor and ontario hydro method[J].Fuel Processing Technology,85:487-499
    Kim J H,Pudasainee D,Yoon Y S,et al.2010.Studies on speciation changes and mass distribution of mercury in a bituminous coal-fired power plant by combining field data and chemical equilibrium calculation[J].Industrial and Engineering Chemistry Research,49:5197-5203
    Lee S J,Seo Y C,Jang H N,et al.2006.Speciation and mass distribution of mercury in a bituminous coal-fired power plant[J].Atmospheric Environment,40(12):2215-2224
    李仲根,冯新斌,李广辉,等.2013.贵州省民用燃煤的大气汞排放特征[A].中国矿物岩石地球化学学会第14届学术年会论文摘要专辑.13-14
    Lee S J,Seo Y C,Jurng J,et al.2004.Mercury emissions from selected stationary combustion sources in Korea[J].Science of the Total Environment,325:155-161
    Meij R,Winkel H.2006.Mercury emissions from coal-fired power stations:The current state of the art in the Netherlands[J].Science of the Total Environment,368:393-396
    Otero Rey J R,Lopez Vilarino J M,Moreda Pineiro J,et al.2003.As,Hg,and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion[J].Environ Sci Technol,37:5262-5267
    Shah P,Strezov V,Nelson P.2010.Speciation of mercury in coal-fired power station flue gas[J].Energy and Fuels,24:205-212
    Shah P,Strezov V,Prince K,et al.2008.Speciation of As,Cr,Se and Hg under coal fired power station conditions[J].Fuel,87:1859-1869
    Streets D G,Hao J M,Wu Y,et al.2005.Anthropogenic mercury emissions in China[J].Atmospheric Environment,39:7789-7806
    汤顺林,冯新斌,商立海,等.2004.贵阳市小型燃煤锅炉烟气中汞的形态及释放[J].环境科学研究,17(2):74-76
    United Nations Environment Programme(UNEP).2013.Minamata Convention on Mercury[OL].Geneva,Switzerland:UNEP.2016-12-01.http://www.mercuryconvention.org
    United States Geological Survey(USGS).2004.Mercury content in coal mines in China[R].Reston,Virginia:USGS
    Wang S X,Zhang L,Li G H,et al.2010.Mercury emission and speciation of coal-fired power plants in China[J].Atmospheric Chemistry and Physics,10(3):1183-1192
    Wang Y,Duan Y,Yang L,et al.2009.Experimental study on mercury transformation and removal in coal-fired boiler flue gases[J].Fuel Processing Technology,90:643-651
    王运军,段钰锋,杨立国,等.2008.600MW燃煤电站烟气汞形态转化影响因素分析[J].热能动力工程,23(4):399-403
    Yokoyama T,Asakura K,Matsuda H,et al.2000.Mercury emissions from a coal-fired power plant in Japan[J].Science of the Total Environment,259:97-103
    杨祥花,段钰锋,江贻满,等.2007.燃煤锅炉烟气和飞灰中汞形态分布研究[J].煤炭科学技术,35(12):55-58
    Zhang L,Wang S X,Meng Y,et al.2012.Influence of mercury and chlorine content of coal on mercury emissions from coal-fired powe plants in China[J].Environmental Science and Technology,466385-6392
    Zhang L,Wang S X,Wang L,et al.2015.Updated emission inventories fo speciated atmospheric mercury from anthropogenic sources in Chin[J].Environmental Science and Technology,49(5):3185-3194
    Zhao B,Wang S X,Liu H,et al.2013.NOxemissions in China:historica trends and future perspectives[J].Atmospheric Chemistry and Physics,13:9869-9897
    Zhou J.2005.Emissions and control of mercury from coal-fired utilit boilers in China[R].Beijing:China Workshop on Mercury Contro from Coal Combustion
    张磊.2012.中国燃煤大气汞排放特征与协同控制策略研究[D].北京:清华大学.1-144
    中国电力统计年鉴委员会(CEPYEC).2011.中国电力统计年鉴[M]北京:中国电力统计年鉴委员会
    中国电力统计年鉴委员会(CEPYEC).2013.中国电力统计年鉴[M]北京:中国电力统计年鉴委员会
    中国煤控项目组(中国煤炭消费总量控制方案和政策研究)及中国节能协会.2015.中国煤炭消费总量控制规划研究报告[R].北京:中国煤控项目组及中国节能协会
    周劲松,王光凯,骆仲泱,等.2006.600MW煤粉锅炉汞排放的试验研究[J].热能动力工程,21(6):569-572
    周劲松,张乐,骆仲泱,等.2008.300MW机组锅炉汞排放及控制研究[J].热力发电,37(4):22-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700