某水库溢洪道方形消力竖井优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization study of spillway square stilling shaft of a reservoir
  • 作者:石胜友 ; 高华峰 ; 李琳
  • 英文作者:SHI Shengyou;GAO Hhuafeng;LI Lin;College of Hydraulic and Civil Engineering,Xinjiang Agricultural University;Xinjiang Yili Institue of Water Resources and Electric Power Investigation and Design;
  • 关键词:方形消力竖井 ; 模型试验 ; 数值模拟 ; 体型优化 ; 空化数 ; 消能率 ; 溢洪道
  • 英文关键词:square stilling shaft;;model test;;numerical simulation;;shape optimization;;cavitation number;;energy dissipation rate;;spillway
  • 中文刊名:XBSZ
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:新疆农业大学水利与土木工程学院;新疆伊犁州水利电力勘测设计研究院;
  • 出版日期:2019-06-15
  • 出版单位:水资源与水工程学报
  • 年:2019
  • 期:v.30;No.145
  • 基金:新疆自治区高校科研计划项目(XJEDU2017T004)
  • 语种:中文;
  • 页:XBSZ201903028
  • 页数:8
  • CN:03
  • ISSN:61-1413/TV
  • 分类号:185-191+196
摘要
某水库工程侧槽式溢洪道方形消力竖井水工模型试验表明,由于竖井断面尺寸和深度较小,宣泄校核洪水时部分水流直接冲击泄洪洞段进口底板,造成洞进口段流态恶劣。宣泄校核洪水时竖井段各测点的计算空化数介于0. 13~0. 82之间,井壁处个别位置的空化数略小于初生空化数,可能产生空蚀。设计洪水和校核洪水时消能竖井消能率约为53%。应用RNG k-ε模型并结合VOF方法通过系列数值模拟试验对消力井的设计方案进行修改优化,提出了增加消力井深度至8 m、方井宽度增加至8 m的方案,其余尺寸不变。数值模拟数据表明,消力井的尺寸满足设计和校核洪水的安全泄流要求,校核流量工况消能率达到65. 55%,消力井最大负压相对于原方案降低了约为50%,最小空化数由原方案的0. 13提高到了0. 38。
        The hydraulic model test of the square-shaped stilling shaft of a side channel spillway of a reservoir project showed that part of the water flow directly impacted the inlet floor of the flood discharge tunnel section during the flood discharge check due to the small size and depth of the shaft section,which resulted in poor flow in the inlet section of the tunnel. The calculated cavitation numbers of each measuring point in the shaft section during the venting of the nuclear flood were between 0. 13 and 0. 82. The cavitation number at the individual position of the well wall was slightly smaller than the initial cavitation number,which may cause cavitation. The energy dissipation rate of the energy dissipation shaft during design floods and check floods was approximately 53%. The RNG k-ε model combining with the VOF method was used to modify and optimize the design of the stilling well through a series of numerical simulation experiments. The scheme of increasing the depth of the well to 8 m and the square well width to 8 m was proposed,whereas the remaining dimensionsdid not change. The numerical simulation showed that the sizes of the stilling well meet the safety discharge requirements of design and check flood,the energy dissipation rate of the checked flow condition reached 65. 55%,and the maximum negative pressure of the stilling well reduced about 50% compared with the original scheme. The minimum cavitation number of the original scheme 0. 13 increased to 0. 38.
引文
[1]郭雷,张宗孝,马斌,等.竖井溢洪道水力特性试验研究[J].人民长江,2007,38(6):110-112.
    [2]陈永铭.排洪工程中竖井式溢洪道的水力特性[J].水利科技,2012(3):40-43.
    [3]廖常德,周力.具有消能井的竖井溢洪道及其消能率计算[J].西北水电,1996(3):46-52.
    [4]赵灿华.竖井螺旋流水力学特性研究[D].北京:中国水利水电科学研究院,2001.
    [5]符晓,徐文仙,赵琳,等.绩溪抽水蓄能电站下水库竖井式溢洪道设计与研究[C]//电网调峰与抽水蓄能专业委员会,抽水蓄能电站工程建设文集,2014.
    [6]陈小威,张宗孝,刘冲,等.基于消能井井深变化下的竖井溢洪道压强试验研究[J].应用力学学报,2016,33(5):826-831+936.
    [7]张宗孝,刘冲,白欣,等.基于消力井直径变化下竖井溢洪道压强特征试验研究[J].应用力学学报,2018,35(3):510-516+686.
    [8]周斌斌,凤炜.阶梯溢洪道水力特性试验及数值模拟[J].水资源与水工程学报,2016,27(2):179-184.
    [9]王海军,张凡,李会平.溢洪道泄流临底流速仿真模拟研究[J].水资源与水工程学报,2018,29(5):128-132.
    [10]李炜.水力计算手册[M].北京:中国水利水电出版社,2006.
    [11]南京水利科学研究院,水利水电科学研究院.水工模型试验[M].北京:水利电力出版社,1985.
    [12]徐华.水工模型试验[M].北京:水利电力出版社,1985.
    [13]国家能源局.水电水利工程常规水工模型试验规程:DL/T 5244-2010[S].北京:中国电力出版社,2010.
    [14]李建中,宁利中.高速水力学[M].西安:西北工业大学出版社,1994.
    [15]YAKHOT V,ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing,1986,1(1):3-51.
    [16]施奇.几种主要紊流模型的应用特性比较[J].治淮,2008(7):17-19.
    [17]张凯. Fluent技术基础与应用实例(第2版)[M].北京:清华大学出版社,2010.
    [18]朱红钧,林元华,谢龙汉. FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.
    [19]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700