中国煤中氮同位素组成特征初步研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary Study on the Characteristics of Nitrogen Isotopic Compositions in Chinese Coals
  • 作者:程晨 ; 赵峰华 ; 任德贻 ; 苗雪娜
  • 英文作者:CHENG Chen;ZHAO Fenghua;REN Deyi;MIAO Xuena;College of Geoscience and Surveying Engineering,China University of Mining & Technology;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining & Technology;
  • 关键词:中国 ; ; 氮同位素 ; 煤变质作用 ; 沉积环境 ; 成煤时代
  • 英文关键词:China;;coal;;nitrogen isotope;;coal metamorphism;;sedimentary environment;;coal-forming age
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国矿业大学(北京)地球科学与测绘工程学院;中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;
  • 出版日期:2018-09-15
  • 出版单位:地质学报
  • 年:2018
  • 期:v.92
  • 基金:国家自然科学基金项目(编号41372164);; 国家留学基金(编号CSC201506430017)联合资助成果
  • 语种:中文;
  • 页:DZXE201809014
  • 页数:11
  • CN:09
  • ISSN:11-1951/P
  • 分类号:210-220
摘要
本文采用Dumas燃烧法测定了部分中国煤样的氮同位素组成(δ~(15 )N),并结合文献数据和煤样品的地质背景初步探讨了影响煤中氮同位素组成的因素。研究表明:(1)中国煤的δ~(15 )N值介于+1.4‰~+5.1‰之间,与世界其他地区煤的δ~(15 )N值范围(+0.3‰~+5.4‰)相吻合;同一煤层剖面分层煤样(煤级相似)的δ~(15 )N值具有非均质性特征,最大可达2.5‰。(2)煤的δ~(15 )N值是煤变质作用、沉积环境等多种因素耦合作用的结果。变质作用对煤的δ~(15 )N值的影响主要包括原始煤级、变质程度(煤级)和煤变质作用类型;沉积环境对煤的δ~(15 )N值的影响包括成煤植物的氮源以及沼泽介质的物理化学条件和微生物活动性等因素。(3)就煤变质作用(煤级)而言,中国煤的δ~(15 )N值随煤级升高呈现增高的趋势,到无烟煤又有所降低,这是煤中氮同位素稳定性差异的结果。在高级烟煤阶段(贫瘦煤)之前,随煤级升高稳定性较差的14 N优先脱除,δ~(15 )N值增高,增高幅度约1‰。在高级烟煤至初级无烟煤阶段,煤中剩余的14 N已趋于稳定,随煤级升高,部分不稳定15 N优先脱除,δ~(15 )N值降低。在无烟煤阶段,随煤级升高,14 N和15 N同步脱除,δ~(15 )N值几乎不变。在不考虑含氮地质流体影响的情况下,深成变质作用和接触变质作用对煤中δ~(15 )N值的影响应相似。(4)就沉积环境而言,形成于海陆过渡相的中高硫煤/高硫煤的δ~(15 )N值最高,形成于陆相的特低硫煤和低硫煤的δ~(15 )N值次之,而形成于碳酸盐岩台地相的超高有机硫煤的δ~(15 )N值最低,这主要与沉积环境中成煤植物的氮源以及泥炭化作用阶段植物有机质降解程度的差异有关。一般以富集15 N的海水硝酸盐为氮源的成煤植物形成的煤(海陆过渡相中高硫煤/高硫煤)较以相对亏损15 N的大气氮为氮源的成煤植物形成的煤(陆相特低硫煤和低硫煤)要富集15 N。当成煤母质在泥炭化作用阶段受到微生物降解作用较弱时(陆相特低硫煤和低硫煤),形成的煤氮含量较高,δ~(15 )N会有所上升;当成煤母质在泥炭化作用阶段受到强烈的微生物降解作用时(碳酸盐岩台地相超高有机硫煤)成煤植物蛋白质(富15 N)被降解损失的较多,形成煤的氮含量较低,δ~(15 )N值又会有所降低。此外,煤的δ~(15 )N值还与惰质组含量有关,因为在丝炭化过程中大量损失氮使得惰质组的δ~(15 )N值偏低,当成煤母质遭受的降解作用较弱时(四台煤矿12号特低硫煤),惰质组含量变化对煤δ~(15 )N值的控制作用尤为明显。(5)就成煤时代而言,中国的晚古生代煤与中生代煤的δ~(15 )N值相近,都高于新生代煤的δ~(15 )N值。δ~(15 )N值的这种差异并不是因为不同成煤时代的成煤植物不同造成的,而是因为新生代煤样为尚未经历煤变质作用的褐煤,其氮损失较少,所以新生代褐煤δ~(15 )N值较低。
        In this study,nitrogen isotopic compositions(δ~(15 )N)of a series of Chinese coals were determined using Dumas combustion method to preliminarily figure out the factors affecting nitrogen isotopic compositions in coals,combined with previous results and geological background of coal deposits.The study shows that(1)The δ~(15 )N values of Chinese coals range from +1.4‰ to +5.1‰,within the range of δ~(15 )N values(+0.3‰~ +5.4‰)of coals from other regions in the world.The δ~(15 )N values within the same coal profiles display heterogeneous characteristic,with the maximum of 2.5‰.(2)The δ~(15 )N values in coals are controlled by multiple effects including coal metamorphism and sedimentary environment,in which the former involves the effects of original coal grades,metamorphic grades and types,and the latter contains the effects of nitrogen sources of coal-forming plants as well as physical-chemical conditions and microbial activities of swamp medium.(3)In terms of coal metamorphism,the δ~(15 )N values of Chinese coals increase with increasing coal grade(about 1‰)but decrease at anthracite,which reflects the difference in the stability of two nitrogen isotopes.Before transforming into high rank bituminous coal,the δ~(15 )N values increase along with the preferential removal of 14 N.Between high rank bituminous coal and low rank anthracite,the δ~(15 )N values decrease first and keep stable to high rank anthracite,due to the preferential removal of unstable 15 N in this stage but synchronous elimination of ~(14) N and ~(15) N after this stage.Regardless of N-containing geological fluid,hypozonal metamorphism and contact metamorphism should have the same effect on the δ~(15 )N values in coals.(4)As for sedimentary environment,the coals from transition facies with medium-high and high inorganic sulfur content show higherδ~(15 )N values than the coals from lacustrine and fluvial facies with ultralow and low sulfur content,and the lowest coalsδ~(15 )N values are showed in coals from carbonate platform facies with superhigh organic sulfur content.The trend reflects the differences in nitrogen sources and degradation degrees of plant organic matter during peatification.When the microbial degradation of coal-forming precursor is weak(ultralow-sulfur and low-sulfur coals),nitrogen content in coals would be high and δ~(15 )N would increase.When the microbial degradation of coalforming precursor becomes stronger(superhigh-organic-sulfur coals),protein would be degraded severely to lead to a decrease in nitrogen content and δ~(15 )N again.Moreover,δ~(15 )N in coals are also related to inertinite content,which has a relatively low δ~(15 )N due to the loss of massive nitrogen during fusainisation.When the microbial degradation of coal-forming precursor is weak(#12 ultralow-sulfur coal bed in Sitai Mine),the control of inertinite content on δ~(15 )N is more significant.(5)In the case of coal-forming age,Late Paleozoic and Mesozoic Chinese coals show a similar average δ~(15 )N value,which is higher than Cenozoic coals.The difference in δ~(15 )N values is not caused by distinct plants in different coal-forming ages,but the low N loss of Cenozoic lignite without undergoing coal metamorphism.
引文
Ader M,Boudou J P,Javoy M,Goffe B,Daniels E.1998a.Isotope study on organic nitrogen of Westphalian anthracites from the western middle field of Pennsylvania(USA)and from the Bramsche massif(Germany).Organic Geochemistry,29:315~323.
    Ader M,Javoy M,Boudou J P,Hieronimus B,Roux J,Daniels E.1998b.Nitrogen isotopic composition of ammonium-rich illite in anthracites and organic-rich shales from eastern Pennsylvania.Goldschmidt Conference Abstracts,62:13~14.
    Ader M,Boudou J P,Roux J,Daniels E,Javoy M,Recherche C D,Ferrollerie D,Petroleum C,Company T,Box P O,Habra L.2000.Nitrogen Isotopic Composition of Fixed Ammonium in Rocks Evidence for a Possible Ammonia Stability in Fluids?Goldschmidt Conference Abstracts,5:117~118.
    Andersson R A,Meyers P,Hornibrook E,Kuhry P,M9rth C M.2012.Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic.Journal of Quaternary Science,27:545~552.
    Asada T,Warner B G,Aravena R.2005.Nitrogen isotope signature variability in plant species from open peatland.Aquatic Botany,82:297~307.
    Bokhoven C,Theuwen,H J.1966.Determination of the abundance of carbon and nitrogen isotopes in Dutch coals and natural gas.Nature(London),211:927~929.
    Boudou J P,Mariotti A,Oudin J L.1984.Unexpected enrichment of nitrogen during the diagenetic evolution of sedimentary organic matter.Fuel,63:1508~1510.
    Boudou J P,Schimmelmann A,Ader M,Mastalerz M,Sebilo M,Gengembre L.2008.Organic nitrogen chemistry during lowgrade metamorphism.Geochimica et Cosmochimica Acta,72:1199~1221.
    Boyle R A,Clark J R,Poulton S W,Shields-Zhou G,Canfield D E,Lenton T M.2013.Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean.Nature Communications,4:1533.
    Dai S F,Ren D Y,Chou C L,Finkelman R B,Seredin V V,Zhou Y P.2012.Geochemistry of trace elements in Chinese coals:Areview of abundances,genetic types,impacts on human health,and industrial utilization.International Journal of Coal Geology,94:3~21.
    Dai S F,Zhang W G,Seredin V V,Ward C R,Hower J C,Song WJ,Wang X B,Li X,Zhao L X,Kang H,Zheng L C,Wang PP,Zhou D.2013.Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions:A case study from the Heshan Coalfield,southern China.International Journal of Coal Geology,109~110:77~100.
    Esmeijer-Liu A J,Kürschner W M,Lotter A F,Verhoeven J T A,Goslar T.2012.Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition.Water,Air,&SoilPollution,223:2007~2022.
    Fan Wenbo.2015.Geological features and research progress of the Mesoproterozoic Xiamaling Formation in the North China Craton:A review after nearly one hundred years of study.Geological Review,61(6):1383~1406(in Chinese with English abstract).
    Gan Baoping,Lai Shaocong,Qin Jiangfeng.2016.Petrogenesis and implications for the Neoproterzoic monzogranite in Pinghe,Micang Mountain.Geological Review,62(4):929~944(in Chinese with English abstract).
    Godfrey L V,Falkowski P G.2009.The cycling and redox state of nitrogen in the Archaean ocean.Nature Geoscience,2:725~729.
    Han Yao,Zhang Chuanheng,Zhang Heng,You Guoqing,Li Liyang.2016.Configuration of Mid Neoproterozoic arc-basin system in eastern Jiangnan orogenic belt.Geological Review,62(2):285~299(in Chinese with English abstract).
    Hoering T.1955.Variations of nitrogen-15abundance in naturally occurring substances.Science,122,1233~1234.
    Hoefs J.2015.Stable Isotope Geochemistry.Switzerland:Springer International Publishing,1~74.
    Huang Daomao,Wan Yusheng,Zhang Dehui,Dong Chunyan,Zhao Yuanyi.2016.Paleoproterozoic tectono-thermal events in the Xiatang area,Lushan County,southern margin of the North China Craton-Evidence from geochemical features,zircon SHRIMP dating and Hf isotopic analysis.Geological Review,62(6):1439~1461(in Chinese with English abstract).
    Jonasson S,Shaver G R.1999.Within-stand nutrient cycling in Arctic and boreal wetlands.Ecology,80:2139~2150.
    Lallier-Verges E,Perrussel B P,Disnar J R,Baltzer F,1998.Relationships between environmental conditions and the diagenetic evolution of organic matter derived from higher plants in a modern mangrove swamp system(Guadeloupe,French West Indies).Organic Geochemistry,29:1663~1686.
    Lehmann M,Bernasconi S,Barbieri A,McKenzie J.2002.Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis.Geochimica et Cosmochimica Acta,66:3573~3584.
    Li W W,Tang Y G.2014.Sulfur isotopic composition of superhighorganic-sulfur coals from the Chenxi coalfield,southern China.International Journal of Coal Geology,127:3~13.
    Macko S A,Fogel M L,Hare P E,Hoering T C.1987.Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms.Chemical Geology,65:79~92.
    Parwel A,Ryhage R,Wickman F E.1957.Natural variations in the relative abundances of the nitrogen isotopes.Geochimica et Cosmochimica Acta,11:165~170.
    Ren Yunwei,Wang Huichu,Kang Jiali,Chu Hang,Tian Hui.2017.Paleoproterozoic magmatic events in the Hupiyu area in Yingkou,Liaoning Province and their geological significance.Acta Geologica Sinica,91(11):2456~2472(in Chinese with English abstract).
    Rigby D,Batts B D.1986.The isotopic composition of nitrogen in Australian coals and oil shales.Chemical Geology:Isotope Geoscience Section,58:273~282.
    Rimmer S M,Rowe H D,Taulbee D N,Hower J C.2006.Influence of maceral content on 13C and 15 N in a Middle Pennsylvanian coal.Chemical Geology,225:77~90.
    Schimmelmann A,Mastalerz M,Gao L,Sauer P E,Topalov K.2009.Dike intrusions into bituminous coal,Illinois Basin:H,C,N,O isotopic responses to rapid and brief heating.Geochimica et Cosmochimica Acta,73:6264~6281.
    Schimmelmann A,Lis G P.2010.Nitrogen isotopic exchange during maturation of organic matter.Organic Geochemistry,41:63~70.
    Schwintzer C R.1983.Nonsymbiotic and symbiotic nitrogen fixation in a weakly minerotrophic peatland.American Journal of Botany,70:1071~1078.
    Stach E.1982.Stach’s textbook of coal petrology.Berlin:Gerbruder Borntraeger,177~197.
    Stiehl G,Lehmann M.1980.Isotopenvariationen des Stickstoffs humoser und bitumin9ser natürlicher organischer Substanzen.Geochimica et Cosmochimica Acta,44:1730~1737.
    Sun Beilei,Zeng Fangui,Liu Chao,Zhu Yaru.2017.Cenozoic uplift history of the Xishan coalfield and constraints from apatite fission track dating.Acta Geologica Sinica,91(1):43~54(in Chinese with English abstract).
    Sweeney R E,Liu K K,Kaplan I R.1978.Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen.In:Robinson B W,ed.Stable Isotopes in Earth Sciences.N.Z.D.S.I.R.Bulletin,220,9~26.
    Tian Hui,Li Huaikun,Zhou Hongying,Zhang Jian,Zhang Kuo,Geng Jianzhen,Xiang Zhenqun,Qu Lesheng.2017.Depositional age of the Huashan Group on the northern margin of the Yangtze Plate and its constraints on breakup of the Rodinia supercontinent.Acta Geologica Sinica,91(11):2387~2408(in Chinese with English abstract).
    Wada E,Kadonaga T,Matsuo S.1975.15 N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint.Geochemical Journal,9:139~148.
    Wang Shengwei,Jiang Xiaofang,Yang Bo,Sun Xiaoming,Liao Zhenwen,Zhou Qing,Guo Yang,Wang Zizheng,Yang Bin.2016.The Proterozoic tectonic movement in Kangdian areaⅠ:Kunyang intracontinental rift,mantle plume and its metallogenesis.Geological Review,62(6):1353~1377(in Chinese with English abstract).
    Wang Yan,Li Liqin,Zhang Xiaoqing.2016.Inertinite of coal rocks and its application to the paleoenvironment reconstruction of peat and mire.Geological Review,62(2):375~380(in Chinese with English abstract).
    Whiticar M J.1996.Stable isotope geochemistry of coals,humic kerogens and related natural gases.International Journal of Coal Geology,32:191~215.
    Xiao H Y,Liu C Q.2011.The elemental and isotopic composition of sulfur and nitrogen in Chinese coals.Organic Geochemistry,42:84~93.
    Zerkle A L,Poulton S W,Newton R J,Mettam C,Claire M W,Bekker A,Junium C K.2017.Onset of the aerobic nitrogen cycle during the Great Oxidation Event.Nature,542:465~467.
    Zhang Lin,Dong Chunyan,Liu Shoujie,Bai Wenqian,Ren Peng,Wan Yusheng.2016.Early Precambrian magmatism and metamorphism in Ural Mountain area,North China Craton:SHRIMP U-Pb zircon dating and rock geochemical study.Geological Review,62(6):1419~1438(in Chinese with English abstract).
    Zhu Yu,Lai Shaocong,Zhao Shaowei,Zhang Zezhong,Qin Jiangfeng.2017.Geochemical characteristics and geological significance of the Neoproterozoic K-feldspar granites from the Anshunchang,Shimian area,western Yangtze Block.Geological Review,63(5):1193~1208(in Chinese with English abstract).
    Zhuo Jiewen,Jiang Zhuofei,Jiang Xinsheng,Wang Jian,Cai Juanjuan,Xiong Guoqing,Lu Junze,Cui Xiaozhuang,Liu Jianhui.2017.SHRIMP zircon U-Pb ages for the stratotype section of Neoproterozoic Suxiong Formation in western Sichuan Province and their geological significance.Geological Review,63(1):177~188(in Chinese with English abstract).
    范文博.2015.华北克拉通中元古代下马岭组地质特征及研究进展---下马岭组研究百年回眸.地质论评,61(6):1383~1406.
    甘保平,赖绍聪,秦江锋.2016.米仓山坪河新元古代二长花岗岩成因及其地质意义.地质论评,62(4):929~944.
    韩瑶,张传恒,张恒,游国庆,李利阳.2016.江南造山带东段新元古代弧盆构造格局.地质论评,62(2):285~299.
    黄道袤,万渝生,张德会,董春艳,赵元艺.2016.华北克拉通南缘下汤地区古元古代构造热事件---地球化学特征、锆石SHRIMPU-Pb定年和Hf同位素研究.地质论评,62(6):1439~1461.
    任云伟,王惠初,康健丽,初航,田辉.2017.辽宁营口虎皮峪地区古元古代岩浆事件及地质意义.地质学报,91(11):2456~2472.
    孙蓓蕾,曾凡桂,刘超,朱亚茹.2017.太原西山煤田新生代隆升史的磷灰石裂变径迹约束.地质学报,91(1):43~54.
    田辉,李怀坤,周红英,张健,张阔,耿建珍,相振群,瞿乐生.2017.扬子板块北缘花山群沉积时代及其对Rodinia超大陆裂解的制约.地质学报,91(11):2387~2408.
    王生伟,蒋小芳,杨波,孙晓明,廖震文,周清,郭阳,王子正,杨斌.2016.康滇地区元古宙构造运动Ⅰ:昆阳陆内裂谷、地幔柱及其成矿作用.地质论评,62(6):1353~1377.
    王岩,李丽琴,张筱青.2016.煤中惰质组在泥炭沼泽古环境研究中的应用.地质论评,62(2):375~380.
    张琳,董春艳,刘守偈,白文倩,任鹏,万渝生.2016.华北克拉通乌拉山地区早前寒武纪岩浆作用和变质作用---锆石SHRIMP U-Pb定年及岩石地球化学研究.地质论评,62(6):1419~1438.
    朱毓,赖绍聪,赵少伟,张泽中,秦江锋.2017.扬子板块西缘石棉安顺场新元古代钾长花岗岩地球化学特征及其地质意义.地质论评,63(5):1193~1208.
    卓皆文,江卓斐,江新胜,王剑,蔡娟娟,熊国庆,陆俊泽,崔晓庄,刘建辉.2017.川西新元古代苏雄组层型剖面SHRIMP锆石U-Pb年龄及其地质意义.地质论评,63(1):177~188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700