基于浸入实体法的矩形双螺杆泵流动特性数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Flow Characteristics of Rectangular Twin Screw Pump based on Immersed Entity Method
  • 作者:袁帅 ; 刘小兵 ; 张惟斌 ; 江启峰
  • 英文作者:YUAN Shuai;LIU Xiao-bing;ZHANG Wei-bin;JIANG Qi-feng;Key Laboratory of Fluid and Power Machinery,Ministry of education,Xihua University;Research Center of Fluid Mechanical Engineering Technology,Jiangsu University;
  • 关键词:矩形双螺杆泵 ; 浸入实体法 ; CFD ; 瞬态计算
  • 英文关键词:Rectangular twin-screw pump;;immersed entity method;;CFD;;transient calculation
  • 中文刊名:RNWS
  • 英文刊名:Journal of Engineering for Thermal Energy and Power
  • 机构:西华大学流体及动力机械教育部重点实验室;江苏大学流体机械工程技术研究中心;
  • 出版日期:2018-08-22 18:08
  • 出版单位:热能动力工程
  • 年:2018
  • 期:v.33;No.213
  • 基金:国家自然科学基金(51279172);; 四川省流体机械重点实验室开放研究基金(szjj2016-002)~~
  • 语种:中文;
  • 页:RNWS201808012
  • 页数:6
  • CN:08
  • ISSN:23-1176/TK
  • 分类号:58-63
摘要
为获得矩形双螺杆泵内部全流道的瞬态流动特性,基于浸入实体方法,采用CFD模拟平台,运用N-S方程和标准k-ε湍流模型对给定基本参数的螺杆泵典型设计工况进行瞬态数值模拟,得到了螺杆泵各过流部件在运转过程中的流动信息。计算表明:压力从进口到出口沿螺旋槽逐渐升高,增压效果明显,泵体各断面最大压差约280 k Pa;进口区域流场较为紊乱,互相啮合的转子螺旋槽内由于压差较大、速度较高,最大速度约11 m/s,在转子与泵壳壁面接触区域存在少量负轴向速度,为主要泄漏区域,泄露量较小,密封性能较好。
        In order to obtain the transient flow characteristics of the full flow channel inside a rectangular twin screw pump,based on immersed solid method and CFD simulation,the N-S equation and the standard k-ε turbulence model were used to simulate the typical design conditions of the screw pump with given basic parameters. The flow information inside the screw pump during operation was obtained. The calculation results showed that the pressure increases gradually from the inlet to the outlet along the spiral groove,the supercharging effect is evident,and the maximum pressure difference of each section of the pump body is about 280 k Pa. The turbulence in the inlet area is strong. In the spiral grooves of intermeshing rotors,the velocity is relatively high due to the large pressure difference,with the maximum velocity of about 11 m/s. There is a small negative axial velocity in the contact area,which is the main leakage area.The leakage amount is small and the sealing performance is reliable.
引文
[1]王春林,邢岩,阮劲松,等.迷宫螺旋泵螺旋槽的实验研究[J].水泵技术,2006(2):18-20.WANG Chun-lin,XING Yan,RUAN Jin-song,et al.Experimental study on screw groove of labyrinth screw pump[J].Pump Technology,2006(2):18-20.
    [2]李福天.螺杆泵[M].北京:机械工业出版社,2010.LI Fu-tian.Screw Pump[M].Beijing:China Machine Press,2010.
    [3]毛华永,李娜,杨滨,等.摆线转子泵转子齿廓的形成[J].山东科学,2003,16(1):26-29.MAO Hua-yong,LI Na,YANG Bin,et al.Forming of the rotor tooth profile of cycloid rotor pump[J].Shandong Science,2003,16(1):26-29.
    [4]RYAZANTSEVV M.Characteristics of screw pumps with screws of different profile[J].Chemical and Petroleum Engineering,1998,34(2):109-113.
    [5]张元勋,唐倩,李忠华,等.基于流体力学泄漏模型的螺杆泵泄漏机理分析[J].农业机械学报,2014,45(10):326-332,339.ZHANG Yuan-xun,TANG Qian,LI Zhong-hua,et al.Leakage mechanism of screw pump based on leakage model in fluid mechanics[J].Transactions of the Chinese Society of Agricultural Machinery,2014,45(10):326-332,339.
    [6]田国文,张有忱,黎镜中.迷宫螺旋泵内部流动的CFD模拟[J].北京化工大学学报:自然科学版,2007,34(2):208-220.TIAN Guo-wen,ZHANG You-chen,LI Jing-zhong.Computational fluid dynamics(CFD)simulation of the internal flow in a labyrinth screw pump[J].Journal of Beijing University of Chemical Technology:Natural Science Edition,2007,34(2):208-220.
    [7]王春林,马庆勇,邢岩,等.梯形迷宫螺旋泵内部流动数值计算及性能预测[J].江苏大学学报(自然科学版),2008(2):138-142.WANG Chun-lin,MA Qing-yong,XING Yan,et al.Numerical simulation and performance prediction inside trapeziform labyrinth screw pump[J].Journal of Jiangsu University:Natural Science E-dition,2008(2):138-142.
    [8]唐倩,张元勋,高瞻.双螺杆泵流场动力特性的数值模拟[J].中国机械工程,2010,21(12):1453-1457.TANG Qian,ZHANG Yuan-xun,GAO Zhan.Numerical simulation of flow field dynamics characteristics for twin-screw pump[J].China Mechanical Engineering,2010,21(12):1453-1457.
    [9]SONG X G,JUNG J H,LEE S H,et al.2-D dynamic analysis of a pressure relief valve by CFD[C].Proceedings of the 9th WSEAS Int.Conference on Applied Computer and Applied Computational Science,2010:136-140.
    [10]SONG X G,PARK Y C,PARK J H.Blowdown prediction of a conventional pressure relief valve with a simplified dynamic model[J].Mathematical and Computer Modeling,2013,57(1/2):279-288.
    [11]谢龙汉,赵新宇,张炯明.ANSYS CFX流体分析及仿真[M].北京:电子工业出版社,2010XIE Long-han,ZHAO Xin-yu,ZHANG Jiong-ming.ANSYS CFXfluid analysis and simulation[M].Beijing:Publishing House of Electronics Industry,2010.
    [12]范宜霖,张继伟,胡春艳,等.结构参数对提升阀性能的影响[J].中国机械工程,2017,28(14):1714-1717.FAN Yi-lin,ZHANG Ji-wei,HU Chun-yan,et al.Influences of structural parameters on properties of poppet valves[J].China Mechanical Engineering,2017,28(14):1714-1717.
    [13]陈松山,葛强,周正富,等.大型泵站双向进水流道三维紊流数值模拟[J].江苏大学学报:自然科学版,2005(2):102-105.CHEN Song-shan,GE Qiang,ZHOU Zheng-fu,et al.Numerical simulation of three-dimensional turbulent flow for reversible intake passage in large pumping stations[J].Journal of Jiangsu University:Natural Science Edition,2005(2):102-105.
    [14]陈松山,周正富,屈磊飞,等.泵站箱涵式出水流道三维湍流数值分析[J].江苏大学学报:自然科学版,2005(6):468-471.CHEN Song-shan,ZHOU Zheng-fu,QU Lei-fei,et al.Numerical simulation of three dimensional turbulent flow for tank-style outlet passage in large pumping stations[J].Journal of Jiangsu University:Natural Science Edition,2005(6):468-471.
    [15]胡坤,李振北.ANSYS ICEM CFD工程实例详解[M].北京:人民邮电出版社,2014.HU Kun,LI Zhen-bei.ANSYS ICEM CFD detailed engineering examples[M].Beijing:Post&Telecom Press,2014.
    [16]荆珂.双螺杆反应器组合螺杆的三维流场数值模拟[J].机械设计与制造,2008(5):85-87.JING Ke.Numerical simulation of 3-D flow characteristics in twin screw extruders with combined screws[J].Machinery Design&Manufacture,2008(5):85-87.
    [17]BERAND F,TANGUY P A,THIBAULT F.A Three dimension fictitious domain method for incompressible fluid flow problems[J].International Journal for Numerical Methods in Fluids,1997,25(6):719-736.
    [18]CAO Feng,PENG Yue-yuan,XIN Zi-wen,et al.Thermo dynamic performance simulation of a twin-screw multiphase pump[J].Proceedings of the Institution of Mechanical Engineers,2001,215(2):157-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700