荒漠植物白刺新固定碳在植物-土壤系统中的分配
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution of newly fixed carbon of Nitraria tangutorumin the plant-soil system
  • 作者:李新乐 ; 鲍芳 ; 吴波 ; 曹艳丽 ; 刘明虎 ; 段瑞兵
  • 英文作者:LI Xin-le;BAO Fang;WU Bo;CAO Yan-li;LIU Ming-hu;DUAN Rui-bing;Institute of Desertification Studies,Chinese Academy of Forestry;Experimental Center of Desert Forestry,Chinese Academy of Forestry,Dengkou Desert Ecosystem Research Station of Inner Mongolia;
  • 关键词:荒漠植物 ; 新固定碳 ; 分配动态 ; 分配格局 ; 稳定同位素
  • 英文关键词:desert plant;;newly fixed carbon;;distribution dynamics;;distribution pattern;;stable isotope
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:中国林业科学研究院荒漠化研究所;中国林业科学研究院沙漠林业实验中心内蒙古磴口荒漠生态系统国家定位观测研究站;
  • 出版日期:2019-02-20
  • 出版单位:草业学报
  • 年:2019
  • 期:v.28;No.163
  • 基金:中央级公益性科研院所基本科研业务费专项资金(CAFYBB2017QA028);; 国家自然科学基金青年项目(31400421;31600394);; 中国林业科学研究院荒漠化所结余项目(IDS2018JY-3;IDS2018JY-9)资助
  • 语种:中文;
  • 页:CYXB201902004
  • 页数:8
  • CN:02
  • ISSN:62-1105/S
  • 分类号:36-43
摘要
定量生长季内荒漠植物新固定碳在植物-土壤的分配规律,对理解全球碳循环有着重要意义。采用野外原位13C-CO2脉冲标记法,测定植物各器官及土壤13 C丰度值,比较不同标记时间段白刺新固定碳分配在不同器官、土壤和呼吸损失中的分配规律,并量化了白刺光合碳向地上、地下碳库的转移。结果表明:不同标记时间段内13 C-新固定碳在白刺叶、茎、根、土壤中的分配差异明显。在标记后1h内,叶片和茎中13 C丰度值迅速上升到最高值,13C丰度值分别达到520.1‰和592.5‰,比对照分别增加14和20倍,此后13 C丰度值随时间推移逐渐下降,直至趋于稳定;而标记后18h在根系和土壤中发现被标记的13 C,13 C丰度值分别达到9.5‰和-23.8‰,白刺新固定碳经地上部呼吸和土壤呼吸损失量分别在标记1和18h后达到最大。标记32d后,白刺新固定碳在地上部和地下部13 C分配比例分别占35.59%和32.49%,呼吸损失(地上呼吸+土壤呼吸)占31.92%。荒漠植物白刺生长季年固碳量为2895.6kg C·hm-2·yr-1,表明白刺在荒漠生态系统碳循环中起着重要的碳汇作用。
        Characterizing the carbon turnover in terrestrial ecosystems is critical for understanding and predicting carbon dynamics in ecosystems.We used in situ 13 C pulse labeling to track photosynthetic carbon fluxes of Nitraria tangutorumfrom shoot to root and soil in the Ulanbuh Desert.The objectives of this study were:1)To determine the transfer dynamics of newly photosynthesized carbon to different carbon pools including leaves,stems,roots,soil,and respiration.2)To quantify the allocation rate of newly fixed carbon among different carbon pools.3)to estimate the carbon budget of a N.tangutorumdesert ecosystem.It was found that the distribution of 13C-newly fixed carbon in leaves,stems,and roots of N.tangutorumand in soil was significantly different in different labeling periods.The 13 C abundance value in leaves and stems rose rapidly to the highest value after labeling for 1h,at which point the 13 C abundance value was 520.1‰and 592.5‰,14 and 20times higher than the control,respectively.Thereafter,the 13 C abundance value gradually decreased with time until it stabilized.The labeled 13 C was found in the roots and soil after labeling 18 h,and the 13 C abundance values reached 9.5‰ and-23.8‰,respectively.The amount of newly fixed carbon lost through shoot respiration and soil respiration reached a maximum after labeling for 1hand 18 h,respectively.At the end of the labeling period,about 35.59% of labeled carbon was transferred to the shoots,16.67% was retained in root,31.92%was lost as respiration(shoot respiration+soil respiration)and 15.82%remained in the soil.In the three carbon pools,i.e.,shoot,root,and soil pools,shoots consistently had the highest proportion of 13 C in the plantsoil system during the 32 days.Based on the 13 C partitioning pattern and biomass production,we estimate a total of 2895.6kg C·ha-1·yr-1 was fixed by these desert plants during the vegetation growth season.This study suggests that N.tangutorumplays an important role in carbon sequestration in the carbon cycle of desert ecosystems.
引文
[1] Wang Z P,Chen Q S.Recently photosynthesized carbon allocation and turnover:a minor review of the literature.Chinese Journal of Plant Ecology,2005,29(5):845-850.王智平,陈全胜.植物近期光合碳分配及转化.植物生态学报,2005,29(5):845-850.
    [2] Tang X,Zhao X,Bai Y,et al.Carbon pools in China's terrestrial ecosystems:New estimates based on an intensive field serve.Proceedings of the National Academy of Sciences,2018,115(16):4021-4026.
    [3] Stone R.Ecosystems,have desert researchers discovered a hidden loop in the carbon cycle.Science,2008,320(5882):1409-1410.
    [4] Tu Z F,Li M X,Sun T.The status and trend analysis of desertification and sandification.Forest Resources Management,2016,(1):1-5.屠志方,李梦先,孙涛.第五次全国荒漠化和沙化监测结果及分析.林业资源管理,2016,(1):1-5.
    [5] Yan W.Biomass allocation and its influencing factors in typical terrestrial ecosystems in China.Shanghai:East China Normal University,2017.颜韦.中国典型陆地生态系统的生物量分配及其影响因素分析.上海:华东师范大学,2017.
    [6] Heimann M,Reichstein M.Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature,2008,451(7176):289-292.
    [7] Greaver T L.A global perspective on belowground carbon dynamics under nitrogen enrichment.Ecology Letters,2010,13(7):819-828.
    [8] Zhang B W.Asymmetric response of semi-arid grassland productivity and carbon cycle to precipitation changes.Beijing:Chinese Academy of Sciences University,2016.张兵伟.半干旱草原生产力和碳循环对降水变化的非对称响应.北京:中国科学院大学,2016.
    [9] Hafner S,Unteregelsbacher S,Seeber E,et al.Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13 CO2pulse labeling.Global Change Biology,2012,18(2):528-538.
    [10] Lin G H.Stable isotope ecology.Beijing:Higher Education Press,2013.林光辉.稳定同位素生态学.北京:高等教育出版社,2013.
    [11] Wu Y,Tan H C,Deng Y C,et al.Partitioning pattern of carbon flux in a Kobresiagrassland on the Qinghai-Tibetan Plateau revealed by field 13 C pulse-labeling.Global Change Biology,2010,16(8):2322-2333.
    [12] Kuzyakov Y,Domanski G.Model for rhizodeposition and CO2efflux from planted soil and its validation by 14 C pulse labelling of ryegrass.Plant&Soil,2002,239(1):87-102.
    [13] Ge T,Yuan H,Zhu H,et al.Biological carbon assimilation and dynamics in a flooded rice-soil system.Soil Biology&Biochemistry,2012,48(4):39-46.
    [14] Wang Q Y,Zhu Z K,Yuan H C.Allocation and input efficiency of assiimilated carbon in rice-soil systems at different growth stages.Research of Environmental Sciences,2016,29(10):1471-1478.王群艳,祝贞科,袁红朝,等.不同生育期光合碳在水稻-土壤系统中的分配及输入效率.环境科学研究,2016,29(10):1471-1478.
    [15] Chen S,Zhu Z K,Yuan H C,et al.Dynamics of rice photosynthesized carbon input and its response to nitrogen fertilization at the jointing stage:13 C-CO2pulse-labeling.Research of Environmental Sciences,2018,(1):331-338.陈珊,祝贞科,袁红朝,等.拔节期水稻光合碳输入的动态变化及其对施氮的响应:13 C-CO2脉冲标记.环境科学,2018,(1):331-338.
    [16] Zhang R,Zhao Y,He H B,et al.Investigation on effects of elevated atmospheric CO2concentration on plant-soil system carbon cycling:Based on stable isotopic technique.Journal of Applied Ecology,2017,28(7):2379-2388.张蕊,赵钰,何红波,等.基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响.应用生态学报,2017,28(7):2379-2388.
    [17] Ma T,Liu X,Li J,et al.Effects of elevated atmospheric CO2on the distribution and accumulation of photosynthetic carbon in soil-plant(Spring Wheat)system.Journal of Nuclear Agricultural Sciences,2014,28(12):2238-2246.马田,刘肖,李骏,等.CO2浓度升高对土壤-植物(春小麦)系统光合碳分配和积累的影响.核农学报,2014,28(12):2238-2246.
    [18] Xu Z Z,Zhou G S,Xiao C W,et al.Iteracive effects of doubled atmospheric CO2concentrations and soil drought on whole plant carbon allocation in two dominant desert shrubs.Acta Pytoecologica Sinica,2005,29(2):281-288.许振柱,周广胜,肖春旺,等.CO2浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响.植物生态学报,2005,29(2):281-288.
    [19] Li Q H,Jiang Z P.Research on plant species of genus Nitraria L.Beijing:China Forestry Publishing Press,2011.李清河,江泽平.白刺研究.北京:中国林业出版社,2011.
    [20] Bao F,He J,Cao Y L,et al.Response and acclimation of photosynthesis in Nitraria tangutorumto rain addition treatments in temperate desert in Northwest China.Journal of University of Chinese Academy of Sciences,2017,34(4):508-514.鲍芳,何季,曹燕丽,等.荒漠植物白刺光合作用对人工模拟增雨的响应与适应.中国科学院大学学报,2017,34(4):508-514.
    [21] Piao S L,Fang J Y,Huang Y.The carbon balance of terrestrial ecosystems in China.China Basic Science,2010,12(2):20-22.朴世龙,方精云,黄耀.中国陆地生态系统碳收支.中国基础科学,2010,12(2):20-22.
    [22] Liu W,LüH H,Chen Y X,et al.Application of stable carbon isotope technique in the research of carbon cycling in soilplant system.Journal of Applied Ecology,2008,19(3):674-680.刘微,吕豪豪,陈英旭,等.稳定碳同位素技术在土壤-植物系统碳循环中的应用.应用生态学报,2008,19(3):674-680.
    [23] Kuzyakov Y,Schneckenberger K.Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation.Archives of Agronomy&Soil Science,2004,50(1):115-132.
    [24] Lu Y,Watanabe A,Kimura M.Input and distribution of photosynthesized carbon in a flooded rice soil.Global Biogeochemical Cycles,2002,16(4):31-32,38.
    [25] Deng Y W,Tang C,Yuan H C,et al.The 13 C-CO2pulsing labeling method:distribution of rice photosynthetic carbon in plant-soil systems during different rice growth stages.Acta Ecologica Sinica,2017,37(19):6466-6471.邓扬悟,唐纯,袁红朝,等.13 C脉冲标记法:不同生育期水稻光合碳在植物-土壤系统中的分配.生态学报,2017,37(19):6466-6471.
    [26] Qian Y,Sun H G,Dong R X,et al.Research progress of carbohydrates allocation in conifers.Scientia Silvae Sinicae,2018,54(1):141-153.钱杨,孙洪刚,董汝湘,等.针叶树碳水化合物分配研究进展.林业科学,2018,54(1):141-153.
    [27] Yu P,Zhang Y L,Wang C X,et al.Distribution of photosynthetic carbon in rice-soil system relative to rice growth stage.Acta Pedologica Sinica,2017,54(5):1218-1229.于鹏,张玉玲,王春新,等.不同生育期光合碳在水稻-土壤系统中的分配.土壤学报,2017,54(5):1218-1229.
    [28] Zhang Z X,Chen P,Zheng E N,et al.Effect of different water and nitrogen managements on rice leaf water use efficiency based on delta 13 C.Transactions of the Chinese Society for Agricultural Machinery,2018,(5):310-319.张忠学,陈鹏,郑恩楠,等.基于13 C分析不同水氮管理对水稻水分利用效率的影响.农业机械学报,2018,(5):310-319.
    [29] Crawford M C,Grace P R,Oades J M.Allocation of carbon to shoots,roots,soil and rhizosphere respiration by barrel medic(Medicago truncatula)before and after defoliation.Plant&Soil,2000,227(1/2):67-75.
    [30] Werth M,Kuzyakov Y.Below-ground partitioning(14 C)and isotopic fractionation(delta 13 C)of carbon recently assimilated by maize.Isotopes in Environmental and Health Studies,2005,41(3):237-248.
    [31] Swinnen J,Vanveen J A,Merckx R.Rhizosphere carbon fluxes in field-grown spring wheat:Model calculations based on 14 C partitioning after pulse-labelling.Soil Biology&Biochemistry,1994,26(2):171-182.
    [32] Butler J L,Bottomley P J,Griffith S M,et al.Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres.Soil Biology&Biochemistry,2004,36(2):371-382.
    [33] Kuzyakov Y,Domanski G.Carbon input by plants into the soil.Review.Journal of Plant Nutrition and Soil Science,2015,163(4):421-431.
    [34] Yin Y F,Yang Y S,Gao R,et al.A preliminary study on phyto-enrichment 13 C labeling technique.Acta Pedologica Sinica,2010,47(4):790-793.尹云锋,杨玉盛,高人,等.植物富集13 C标记技术的初步研究.土壤学报,2010,47(4):790-793.
    [35] Ostle N,Ineson P,Benham D,et al.Carbon assimilation and turnover in grassland vegetation using an in situ 13 CO2pulse labelling system.Rapid Communications in Mass Spectrometry,2015,14(15):1345-1350.
    [36] Ren Y.Responses of carbon sequestration capacity to simulation rain addition of Nitraria tangutorum.Beijing:Chinese Academy of Forestry,2014.任昱.荒漠植物白刺固碳能力对模拟增雨的响应.北京:中国林业科学研究院,2014.
    [37] Dang X H,Meng Z J,Gao Y,et al.Photosynthetic carbon fixation capacity of five natural desert shrubs in west Ordos region.Journal of Arid Land Resources and Environment,2017,31(11):128-135.党晓宏,蒙仲举,高永,等.西鄂尔多斯地区5种荒漠灌丛光合固碳能力研究.干旱区资源与环境,2017,31(11):128-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700