柠檬桉在中国的适生地理分布及其影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The suitable geographic range for Corymbia citriodora in China and the influencing factors
  • 作者:欧阳林男 ; 陈少雄 ; 张维耀 ; 何沙娥 ; 刘学锋
  • 英文作者:OUYANG Lin-nan;CHEN Shao-xiong;ZHANG Wei-yao;HE Sha-e;LIU Xue-feng;China Eucalypt Research Centre,State Forestry Administration;
  • 关键词:物种分布 ; 最大熵模型 ; 气候适宜性 ; 适地适树
  • 英文关键词:species distribution;;MaxEnt model;;climatic suitability;;species-site matching
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:国家林业局桉树研究开发中心;
  • 出版日期:2018-11-13 08:42
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.307
  • 基金:“十三五”国家重点研发计划课题(2016YFD0600502);; 广东省林业科技创新项目(2016KJCX005)资助
  • 语种:中文;
  • 页:STXZ201902007
  • 页数:7
  • CN:02
  • ISSN:21-1148/Q
  • 分类号:55-61
摘要
基于气候、土壤、地形因子数据,结合柠檬桉现有分布数据,使用最大熵模型(MaxEnt)对柠檬桉在中国的适生地理区域进行预测。结果表明:模型的模拟精度高(AUC值>0.91),当前最适生区(存在概率>0.66)主要集中在东南沿海地带;刀切法检验结果显示,最湿季度平均温度、海拔、温度变化方差、年均温、最干季度平均温度、年温变化范围、最暖季度降水量是影响柠檬桉分布的主要生态因子,累积贡献率达86.9%;中国最适生区的最湿季度平均温度、年均温、最干季度平均温度、年温变化范围与原产地自然分布区相应因子相似性强,与原产地自然分布区相比,中国适生区的海拔更低,最暖季度降水量更高,有利于柠檬桉的快速生长。该结果可为柠檬桉在中国的推广种植提供依据。
        We developed a MaxEnt model for predicting potentially suitable geographic areas for Corymbia citriodora with climate,soil and topographic data from the landscapes and data from successful plantation locations in China. The model had high precision( AUC value >0.91). The majority of the highly suitable areas( existence probability >0.66) identified for C. citriodora are concentrated in coastal regions of southeastern China. According to the results of the jackknife test,the dominant ecological factors affecting the potential distribution of C. citriodora were the mean temperature of the wettest quarter,altitude,seasonal temperature variance,mean annual temperature,mean temperature of the driest quarter,annual temperature range,and precipitation of the warmest quarter. These factors together accounted for 86.9% of variation in suitable areas.The mean temperature of wettest quarter,mean annual temperature,mean temperature of the driest quarter and the annual temperature range for areas identified as being highly suited to C. citriodora in China,were similar to the values of the corresponding factors in its natural distribution in Australia. Compared with the species' natural distribution,suitable areas in China were characterized by lower altitudes and higher precipitations in the warmest quarter,which are favorable to rapid growth of C. citriodora. Our results provide a reference for sustainable development of C.citriodora plantations in China.
引文
高文强,王小菲,江泽平,等.2016.气候变化下栓皮栎潜在地理分布格局及其主导气候因子.生态学报,36(14):4475-4484.
    黎贵卿,陆顺忠,曾辉,等.2012.柠檬桉枝叶挥发性成分的研究.广西林业科学,41(4):352-355.
    李士美,谢高地,张彩霞,等.2010.森林生态系统水源涵养服务流量过程研究.自然资源学报,25(4):585-593.
    刘郁,李琪安,刘蔚秋,等.2003.深圳围岭公园植被类型及主要植物群落分析.中山大学学报,42(增刊2):14-22.
    刘天颐,刘纯鑫,孔凡启,等.2011.桉树伞房属4个种在广东乐昌的早期生长表现.华南农业大学学报,32(2):70-75.
    祁述雄.2002.中国桉树(第2版).北京:中国林业出版社.
    孙永玉,李昆,崔永忠,等.2009.干热河谷柠檬桉苗期抗旱生理特性.东北林业大学学报,37(2):1-2.
    孙振伟,赵平,牛俊峰,等.2014.外来引种树种大叶相思和柠檬桉树干液流和蒸腾耗水的季节变异.生态学杂志,33(10):2588-2595.
    田广红,黄东,梁杰明,等.2003.珠海市古树名木资源及其保护策略研究.中山大学学报,42(增刊2):203-209.
    王豁然.2010.桉树生物学概论.北京:科学出版社.
    王兆东,谢利娟,龙丹丹,等.2016.银湖山郊野公园典型植物群落物种多样性比较.西南林业大学学报,36(4):16-24.
    谢秋兰,林彦,王楚彪,等.2017.柠檬桉在中国湿热地区的早期生长和抗病性遗传变异.分子植物育种,15(8):3278-3285.
    杨志香,周广胜,殷晓洁,等.2014.中国兴安落叶松天然林地理分布及其气候适宜性.生态学杂志,33(6):1429-1436.
    叶宝鉴,苏春连,董建文,等.2017.永安市园林植物区系特征及抗寒性分析.江西农业大学学报,39(1):111-117.
    Booth TH,Jovanovic T,New M.2002.A new world climatic mapping program to assist species selection.Forest Ecology and Management,163:111-117.
    Booth TH.1990.Mapping regions climatically suitable for particular tree species at the global scale.Forest Ecology and Management,36:47-60.
    Booth TH.2016.Estimating potential range and hence climatic adaptability in selected tree species.Forest Ecology and Management,366:175-183.
    Brondani GE,Oliveira LSD,Konzen ER,et al.2017.Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned.Anais Da Academia Brasileira De Ciencias,doi.org/10.1590/0001-3765201720170284.
    Chippendale GM,Wolf L.1981.The Natural Distribution of Eucalyptus in Australia.Special publication No.6.Canberra:Australian National Park and Wildlife Service:192.
    Cupertino-Eisenlohr MA,Vinícius-Silva R,Meireles LD,et al.2017.Stability or breakdown under climate change?A key group of woody bamboos will find suitable areas in its richness center.Biodiversity and Conservation,26:1845-1861.
    Elith J,Phillips SJ,Hastie T,et al.2011.A statistical explanation of MaxEnt for ecologists.Diversity and Distributions,17:43-57.
    Federico B,Tsonko T,Tariq M,et al.2013.Ultradian variation of isoprene emission,photosynthesis,mesophyll conductance,and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings.Journal of Experimental Botany,64:519-528.
    Gill AM,Belbin L,Chippendale GM.1985.Phytogeography of Eucalyptus in Australia.Australian Flora and Fauna series No.3.Canberra:Australian Government Publishing Service:53.
    Jaynes ET.1957.Information theory and statistical mechanics.Physical Review,106:620-630.
    Kelly R,Leach K,Cameron A,et al.2014.Combining global climate and regional landscape models to improve prediction of invasion risk.Diversity and Distributions,20:884-894.
    Mohammad-Reza AS,Tarkesh M,Bashari H.2018.MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species,Daphne mucronata,in central Iran.Ecological Informatics,43:116-123.
    Nichols JD,Smith RGB,Grant J,et al.2010.Subtropical eucalypt plantations in eastern Australia.Australian Forestry,73:53-62.
    Parviainen M,Zimmermann NE,Heikkinen RK,et al.2013.Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species.Biodiversity and Conservation,22:1731-1754.
    Phillips SJ,Dudík M.2008.Modeling of species distributions with Maxent:New extensions and a comprehensive evaluation.Ecography,31:161-175.
    Ramírez-Amezcua Y,Steinmann VW,Ruiz-Sanchez E,et al.2016.Mexican alpine plants in the face of global warming:Potential extinction within a specialized assemblage of narrow endemics.Biodiversity and Conservation,25:865-885.
    SáAFLD,Valeri SV,Cruz MCPD,et al.2014.Effects of potassium application and soil moisture on the growth of Corymbia citriodora plants.Cerne,20:645-651.
    Trueman SJ,McMahon TV,Bristow M.2013.Production of cuttings in response to stock plant temperature in the subtropical eucalypts,Corymbia citriodora and Eucalyptus dunnii.New Forests,44:265-279.
    Vessella F,Schirone B.2013.Predicting potential distribution of Quercus suber in Italy based on ecological niche models:Conservation insights and reforestation involvements.Forest Ecology and Management,304:150-161.
    Wang CJ,Wan JZ,Mu XY,et al.2015.Management planning for endangered plant species in priority protected areas.Biodiversity and Conservation,24:2383-2397.
    Wormington KR,Lamb D,McCallum HI,et al.2007.Leaf nutrient concentrations and timber productivity in the dry sclerophyll forests of South-East Queensland,Australia:Implications for arboreal marsupials.Forest Science,53:627-634.
    Yi YJ,Cheng X,Yang ZF,et al.2016.Maxent modeling for predicting the potential distribution of endangered medicinal plant(H.riparia Lour)in Yunnan,China.Ecological Engineering,92:260-269.
    Yu FY,Groen TA,Wang TJ,et al.2017.Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants.International Journal of Geographical Information Science,31:190-212.
    Zwiener VP,Padial AA,Marques MCM,et al.2017.Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest.Diversity and Distributions,23:955-966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700