典型非金属矿物制造工艺过程源成分谱特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of PM_(10) and PM_(2.5) Source Profiles for Emissions from Nonmetal Mineral Products Manufacturing Processes
  • 作者:赵雪艳 ; 于高峰 ; 王信梧 ; 张向炎 ; 殷宝辉 ; 刘盈盈 ; 王歆华 ; 杨文 ; 赵若杰
  • 英文作者:ZHAO Xue-yan;YU Gao-feng;WANG Xin-wu;ZHANG Xiang-yan;YIN Bao-hui;LIU Ying-ying;WANG Xin-hua;YANG Wen;ZHAO Ruo-jie;State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences;Linyi Environmental Monitoring Station;Zibo Environmental Monitoring Station;
  • 关键词:源成分谱 ; 非金属矿物制品 ; 玻璃制造 ; 陶瓷制造 ; 耐火砖制造 ; 分歧系数 ; 标识组分
  • 英文关键词:source profile;;nonmetal mineral products;;glassmaking;;ceramics;;firebrick manufacturing;;coefficient of divergence;;identifying component
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国环境科学研究院环境基准与风险评估国家重点实验室;临沂市环境监测站;淄博市环境监测站;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFC0212501)
  • 语种:中文;
  • 页:HJKZ201906005
  • 页数:7
  • CN:06
  • ISSN:11-1895/X
  • 分类号:36-42
摘要
鉴于我国缺乏非金属矿物制品工艺过程源成分谱(源谱)现状,采用稀释通道系统于2017年2~6月采集了玻璃制造、陶瓷制造和砖瓦制造共6个非金属矿物制品企业排放的PM_(10)和PM_(2.5)样品,对样品中的50种化学组分进行分析,构建相应的源谱,并对其特征进行研究.结果表明,玻璃制造源谱中以Na元素为主(质量分数介于9. 2%~18. 5%之间),陶瓷制造源谱中以Al、Si、Ca和Fe等地壳元素为主(质量分数在1. 7%~8. 7%之间),耐火砖和页岩砖源谱则是以SO_4~(2-)、NH_4~+等水溶性离子为主,SO_4~(2-)和NH_4~+质量分数分别介于36. 9%~48. 1%和7. 7%~17. 0%之间.不同企业因燃料类型、脱硫脱硝除尘方式不同会对源谱中的化学组分产生影响.源谱之间的分歧系数(CD)显示除页岩砖制造外,其余源谱2种粒径之间均较为相似,同粒径不同源谱间均存在差异,浮法玻璃与药用玻璃之间和2个陶瓷企业之间的CD值相对较小.使用R/U值比较源谱间不同组分的差异识别出Na和As元素可作为玻璃制造的标识组分,陶瓷制造可用Al和Ti来识别,NO_3~-和NH_4~+区分耐火砖,SO_4~(2-)和NH_4~+识别页岩砖.
        In view of the insufficient source profiles for emissions from nonmetal mineral products manufacturing processes in China,a dilution sampling system was used to collect PM_(10) and PM_(2.5) samples from glassmaking,ceramics,and firebrick manufacturing sources between February and June of 2017. The characteristics of 50 chemical components in the samples were studied to identify source profiles. The results showed that the dominant composition of particulate matter in glassmaking plant profiles was Na,with percentages ranging from 9. 2% to 18. 5%. Ceramics profiles were enriched in Al,Si,Ca,and Fe,with percentages ranging from 1. 7% to 8. 7%. Refractory brick and shale manufacturing process profiles were characterized by high abundances of SO_4~(2-)(36. 9%-48. 1%) and NH_4~+ (7. 7%-17. 0%). Chemical components in the source profiles varied with the different fuel types and desulfurization,denitrification,and dedusting methods. The coefficients of divergence(CD) between PM_(2.5) and PM_(10) from the same process were similar except for the results from the shale manufacturing process(CD values > 0. 3),thus indicating that the elements profiles of PM_(2.5) might be similar to those in PM_(10). Profiles of the same particle size from different processes were significantly different from one another,with CD values ranging from 0. 42 to 0. 76. The CD values for float glass and medicinal glass,and the CD values for the two ceramic enterprises were relatively small. The distributions of weighted differences(R/U ratios) were used to compare the differences of components between the source profiles,and results showed that the identified components for glass manufacturing,ceramic manufacturing,fireproof bricks,and page rock bricks were Na and As,Al and Ti,NO_3~- and NH_4~+ ,and SO_4~(2-) and NH_4~+ ,respectively.
引文
[1] Jiang N,Li Q,Su F C,et al. Chemical characteristics and source apportionment of PM2. 5between heavily polluted days and other days in Zhengzhou,China[J]. Journal of Environmental Sciences,2018,66:188-198.
    [2] Tian Y Z, Chen G, Wang H T, et al. Source regional contributions to PM2. 5in a megacity in China using an advanced source regional apportionment method[J]. Chemosphere,2016,147:256-263.
    [3] Shao P Y,Tian H Z,Sun Y J,et al. Characterizing remarkable changes of severe haze events and chemical compositions in multisize airborne particles(PM1,PM2. 5and PM10)from January2013 to 2016-2017 winter in Beijing,China[J]. Atmospheric Environment,2018,189:133-144.
    [4] Cheng X H,Sun Z A,Li D P,et al. Short-term aerosol radiative effects and their regional difference during heavy haze episodes in January 2013 in China[J]. Atmospheric Environment,2017,165:248-263.
    [5] Li J,Du H Y,Wang Z F,et al. Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain[J]. Environmental Pollution,2017,223:605-615.
    [6] Li R,Yang X,Fu H B,et al. Characterization of typical metal particles during haze episodes in Shanghai, China[J].Chemosphere,2017,181:259-269.
    [7] Qiu X H,Duan L,Gao J,et al. Chemical composition and source apportionment of PM10and PM2. 5in different functional areas of Lanzhou,China[J]. Journal of Environmental Sciences,2016,40:75-83.
    [8] Wang Y N,Jia C H,Tao J,et al. Chemical characterization and source apportionment of PM2. 5in a semi-arid and petrochemicalindustrialized city,Northwest China[J]. Science of the Total Environment,2016,573:1031-1040.
    [9] Liu B S,Song N,Dai Q L,et al. Chemical composition and source apportionment of ambient PM2. 5during the non-heating period in Taian,China[J]. Atmospheric Research,2016,170:23-33.
    [10] Zhang R,Sun X S,Shi A J,et al. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing,China[J]. Atmospheric Environment,2018,177:275-282.
    [11] Yang X W,Cheng S Y,Li J B,et al. Characterization of chemical composition in PM2. 5in Beijing before,during,and after a large-scale international event[J]. Aerosol and Air Quality Research,2017,17(4):896-907.
    [12] Li W G,Liu X G,Zhang Y H,et al. Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China[J]. Journal of Environmental Sciences,2018,63:236-249.
    [13] Cai T Q,James S J,Huang W,et al. Sensitivity of source apportionment results to mobile source profiles[J].Environmental Pollution,2016,219:821-828.
    [14] Chen P L,Wang T J,Lu X B,et al. Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing,China[J].Science of the Total Environment,2017,579:860-870.
    [15]张伟,姬亚芹,张军,等.辽宁省典型城市道路尘PM2. 5成分谱研究[J].中国环境科学,2018,38(2):412-417.Zhang W,Ji Y Q,Zhang J,et al. Study on the road dust source profile of PM2. 5in Liaoning Province typical cities[J]. China Environmental Science,2018,38(2):412-417.
    [16] Pei B,Wang X L,Zhang Y H,et al. Emissions and source profiles of PM2. 5for coal-? red boilers in the Shanghai megacity,China[J]. Atmospheric Pollution Research,2016,7(4):577-584.
    [17] Liu Y Y,Zhang W J,Yang W,et al. Chemical compositions of PM2. 5emitted from diesel trucks and construction equipment[J].Aerosol Science and Engineering,2018,2(2):51-60.
    [18] Guo Y Y,Gao X,Zhu T Y,et al. Chemical profiles of PM emitted from the iron and steel industry in northern China[J].Atmospheric Environment,2017,150:187-197.
    [19] Chen P L,Wang T J,Dong M,et al. Characterization of major natural and anthropogenic source profiles for size-fractionated PM in Yangtze River Delta[J]. Science of the Total Environment,2017,598:135-145.
    [20] Kong S F,Ji Y Q,Li Z Y,et al. Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM2. 5and PM10from stationary sources based on dilution sampling[J].Atmospheric Environment,2013,77:155-165.
    [21]赵雪艳,谷超,杨焕明,等.新疆奎独乌区域冬季大气重污染过程PM2. 5组成特征及来源解析[J].环境科学研究,2017,30(10):1515-1523.Zhao X Y,Gu C,Yang H M,et al. Chemical composition and source apportionment of PM2. 5during a winter air pollution episode in the Kui-Du-Wu area of Xinjiang Uygur autonomous region[J]. Research of Environmental Sciences,2017,30(10):1515-1523.
    [22]赵卫凤,王洪华,倪爽英,等.平板玻璃烟气污染物排放特性及治理技术现状[J].环境科学与技术,2017,40(S2):107-111.Zhao W F,Wang H H,Ni S Y,et al. Emission characteristics and treatment technology status of the pollutants from flat glass furnace[J]. Environmental Science&Technology,2017,40(S2):107-111.
    [23] Watson J G,Chow J C. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border[J]. Science of the Total Environment,2001,276(1-3):33-47.
    [24]方平,唐子君,唐志雄,等.陶瓷炉窑烟气污染物排放特性及治理技术现状[J].环境科学与技术,2014,37(12):68-72,192.Fang P,Tang Z J,Tang Z X,et al. Emission characteristics and its treatment technology status of the pollutants from ceramic furnace flue gas[J]. Environmental Science&Technology,2014,37(12):68-72,192.
    [25] Yatkin S, Bayram A. Determination of major natural and anthropogenic source profiles for particulate matter and trace elements in Izmir,Turkey[J]. Chemosphere,2008,71(4):685-696.
    [26]刘亚勇,张文杰,白志鹏,等.我国典型燃煤源和工业过程源排放PM2. 5成分谱特征[J].环境科学研究,2017,30(12):1859-1868.Liu Y Y,Zhang W J,Bai Z P,et al. Characteristics of PM2. 5chemical source profiles of coal combustion and industrial process in China[J]. Research of Environmental Sciences,2017,30(12):1859-1868.
    [27]杨薇桦,姚志良,曹鑫悦,等.典型砖窑烟气污染物排放特征研究[J].环境科学与技术,2015,38(8):38-43.Yang W H,Yao Z L,Cao X Y,et al. Emission characteristics of pollutants from typical brick kilns[J]. Environmental Science&Technology,2015,38(8):38-43.
    [28]王士宝,姬亚芹,李树立,等.天津市春季道路降尘PM2. 5和PM10中的元素特征[J].环境科学,2018,39(3):990-996.Wang S B,Ji Y Q,Li S L,et al. Characteristics of elements in PM2. 5and PM10in road dust fall during spring in Tianjin[J].Environmental Science,2018,39(3):990-996.
    [29] Bano S,Pervez S,Chow J C,et al. Coarse particle(PM10-2. 5)source profiles for emissions from domestic cooking and industrial process in Central India[J]. Science of the Total Environment,2018,627:1137-1145.
    [30]刘晓宇.典型固定燃烧源颗粒物排放特征研究[D].北京:中国环境科学研究院,2007.
    [31]马召辉,梁云平,张健,等.北京市典型排放源PM2. 5成分谱研究[J].环境科学学报,2015,35(12):4043-4052.Ma Z H,Liang Y P,Zhang J,et al. PM2. 5profiles of typical sources in Beijing[J]. Acta Scientiae Circumstantiae,2015,35(12):4043-4052.
    [32] Tian Y Z,Chen J B,Zhang L L,et al. Source profiles and contributions of biofuel combustion for PM2. 5,PM10and their compositions, in a city influenced by biofuel stoves[J].Chemosphere,2017,189:255-264.
    [33] Ni H Y,Tian J,Wang X L,et al. PM2. 5emissions and source profiles from open burning of crop residues[J]. Atmospheric Environment,2017,169:229-237.
    [34] Contini D,Belosi F,Gambaro A,et al. Comparison of PM10concentrations and metal content in three different sites of the Venice Lagoon:an analysis of possible aerosol sources[J].Journal of Environmental Sciences,2012,24(11):1954-1965.
    [35] Stortini A M,Freda A,Cesari D,et al. An evaluation of the PM2. 5trace elemental composition in the Venice Lagoon area and an analysis of the possible sources[J]. Atmospheric Environment,2009,43(40):6296-6304.
    [36] Murillo J H,Ramos A C,ángeles García F,et al. Chemical composition of PM2. 5particles in Salamanca,Guanajuato Mexico:source apportionment with receptor models[J]. Atmospheric Research,2012,107:31-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700