鱼脊焊缝极限承载能力评估技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultimate Bearing Capability Evaluation Technology of Fillet Weld
  • 作者:袁喆 ; 任建亭
  • 英文作者:YUAN Zhe;REN Jianting;School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University;
  • 关键词:鱼脊焊缝 ; 极限承载能力 ; 精细化分析 ; 塑性流动
  • 英文关键词:fillet weld;;ultimate bearing capability;;refined analysis;;plastic flow
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:西北工业大学力学与土木建筑学院;
  • 出版日期:2018-11-12 10:12
  • 出版单位:热加工工艺
  • 年:2018
  • 期:v.47;No.499
  • 语种:中文;
  • 页:SJGY201821053
  • 页数:4
  • CN:21
  • ISSN:61-1133/TG
  • 分类号:207-210
摘要
针对GH202鱼脊焊接结构,分别基于数值仿真和试验方法开展焊缝极限承载能力精细化分析及评估技术研究。基于材料力学性能及焊缝尺寸测量结果,建立精确的鱼脊焊接结构有限元模型,分别对各条焊缝力学性能进行分析,并基于双切线法开展焊缝承载能力评估。结果表明:数值仿真方法获得的焊缝极限承载能力为18.9 t,数值仿真方法与试验测试结果保持了较好的一致性。拉伸载荷作用下,鱼脊焊缝断裂位置均发生在与载荷作用平面成20°左右的夹角方向,数值模拟的焊缝塑性流动方向与断裂方向基本保持一致,数值仿真分析能够较好地预示焊缝断裂方向。
        Aming at GH202 fillet welded structure, detailed analysis and evaluation technology of ultimate bearing capability of fillet weld was carried out based on numerical simulation and experiment test. A finite element model was established based on material mechanical properties and size measurement of the fillet weld. The mechanical properties of each fillet weld was analyzed and the ultimate bearing capability was evaluated based on double tangent method. The results show that the ultimate bearing capability of the fillet weld is 18.9 t by numerical simulation method. The result tested by numerical simulation method is in good agreement with that tested by experiment. Under tensile loading, the interface between the fracture surface and tensile load plane basically keeps 20°. Plastic flow direction obtained by numerical simulation is consistence with fracture basically, the numerical simulation analysis can predict fracture direction of the weld well.
引文
[1]杜家政,赵振洋,黄诚,等.铝合金焊接接头力学性能实验研究[J].实验力学,2017,32(6):811-817.
    [2]汤忠斌,徐绯,许泽建.焊缝结构微区材料力学性能研究[J].机械强度,2010,32(1):58-63.
    [3] Preston R V, Shercliff H R, Withers P J. Physically-based constitutive modeling of residual stress development in welding of aluminum alloy 2024[J]. Acta Materialia, 2004, 52(17):4973-4983.
    [4]周昊,刘英芳,刘刚,等.考虑残余应力的焊接结构多轴疲劳准则[J].焊接学报,2017,38(11):41-46.
    [5]赵晓龙,王彬,巩水利,等. 2.0 mm厚TC4钛合金激光焊接接头组织与力学性能研究[J].热加工工艺, 2017, 46(9):209-211.
    [6]王鹏飞,赵勇,严铿,等. 2A21铝合金厚板搅拌摩擦焊接头组织与分层性能研究[J].江苏科技大学学报, 2017, 31(1):31-34.
    [7] Canaday C T, Moore M A, Tang W, et al. Through thickness property variations in a thick plate AA7050 friction stir welded joint[J]. Materials Science&Engineering A, 2013, 599(3):678-682.
    [8]周士朝,朱浩,赵熠朋,等. 5086铝合金CMT焊接接头微观组织及力学性能研究[J].热加工工艺,2017,46(21):35-39.
    [9]王亦军,董奇志,肖守讷,等.等效结构应力法的焊接疲劳评估[J].河南科技大学学报,2017,38(4):16-20.
    [10] Liu G, Liu Y F, Huang Y. A novel structural stress approach for multiaxial fatigue strength assessment of welded joints[J].International Journal of Fatigue, 2014, 63:171-182.
    [11] Backstrom M. Multiaxial fatigue life assessment of welds based on nominal and hot spot stress[D]. Lappeenranta:Lappeenranta University of Technology, 2003.
    [12] Standard methods for mechanical testing of welds:AWS B4.0:2007[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700