综合物探方法在淮河滨河浅滩岩溶塌陷调查中的应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applied research of comprehensive geophysical method to the investigation of karst collapse in the riverside shoal of Huaihe river
  • 作者:张伟 ; 甘伏平 ; 魏巍 ; 管振德 ; 刘伟 ; 邬健强
  • 英文作者:ZHANG Wei;GAN Fu-ping;WEI Wei;GUAN Zhen-de;LIU Wei;WU Jian-qiang;Institute of Karst Geology,Chinese Academy of Geological Sciences;Karst Dynamics Laboratory,ML R and GZAR;
  • 关键词:岩溶塌陷 ; 地质灾害 ; 滨河浅滩 ; 第四系淤泥层
  • 英文关键词:Karst collapse;;Comprehensive geophysical method;;Riverside shoal;;Quaternary alluvium
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中国地质科学院岩溶地质研究所;国土资源部/广西岩溶动力学重点实验室;
  • 出版日期:2018-11-02 13:53
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.154
  • 基金:中国地质调查局地质调查项目(DD20160254,DD20190266);; 中国地质科学院院控基金项目(YYWF201640)联合资助
  • 语种:中文;
  • 页:DQWJ201902054
  • 页数:8
  • CN:02
  • ISSN:11-2982/P
  • 分类号:422-429
摘要
淮南市八公山区原肥皂厂近些年出现大规模的岩溶塌陷地质灾害,为了查明该调查区地下溶洞、裂隙管道等不良地质体的发育位置,笔者采用高密度电测深法、音频大地电磁法和地震折射法对塌陷区进行野外实验研究,研究结果显示:受滨河浅滩第四系淤泥低阻覆盖层的影响,高密度电测深法和音频大地电磁法测量的视电阻率值偏小,普遍小于200Ω·m,对低阻异常体识别度很低,很难通过视电阻值大小来准确判定基岩与低阻异常体之间的相对空间位置,相比之下,地震折射法受低阻覆盖层的影响较小,覆盖层与基岩之间纵波速度相差很大,实验得出,河床淤泥层纵波速度小于1000 m/s,第四系含砂黏土层纵波速度在1000~2200 m/s之间,基岩纵波速度大于3000 m/s,基岩与覆盖层之间的溶蚀层位纵波速度介于2200~3000 m/s之间.研究结果表明,在滨河浅滩第四系淤泥层等低阻覆盖层的影响下,高密度电测深法和音频大地电磁法测量的视电阻率值偏小,仅仅依靠视电阻率值来判定基岩与低阻异常体之间的相对空间位置不够严谨,在此基础上采用地震折射法,利用基岩、低阻覆盖层与溶蚀层之间的纵波速度差异,能够更加准确的划分并圈定覆盖层、溶蚀层和基岩面的空间位置.
        In recent years, large-scale karst collapse occurred in the original soap factory of Bagongshan District, Huainan City. In order to find out the developmental position of underground karst caves and fractured pipeline in this investigation area, the author adopts high density resistivity method, audio magnetotellurics method and seismic refraction survey to conduct field experiments in the collapse area. The results show that the apparent resistivity measured by high density resistivity method and audio magnetotellurics method is small, generally less than 200 Ω·m, under the influence of low resistance overburden of Quaternary alluvium in riverside shoal. The resolution capability of low resistivity anomalous body is very low, it is difficult to accurately determine the relative spatial position between bedrock and low resistance anomalous body by apparent resistivity value. In contrast, seismic refraction survey is less affected by low resistance overburden. The compressional velocity differs greatly between the overburden and the bedrock. The experiments show that the compressional velocity of apparent resistivity measured by high density resistivity method and audio magnetotellurics method is small under the influence of low resistance overburden such as Quaternary alluvium of riverside shoal. It is not rigorous enough to judge the relative space position between bedrock and low resistivity anomalous body only by apparent resistivity value. It is more accurate to divide and delineate their space position by the difference of compressional velocity among overburden, corrosion layer and bedrock on the basis of adopting seismic refraction survey.
引文
Chen C Y, Bai C X, Song L L, et al. 2010. Application of the multi-channel transient Rayleigh wave method to highway goaf detection[J]. Progress in Geophysics (in Chinese), 25(2): 701-708, doi: 10.3969/j.issn.1004-2903.2010.02.045.
    Chen Y L, Han K, Chen Y X, et al. 2015. The application of CSAMT in karst collapse investigation[J]. Progress in Geophysics (in Chinese), 30(6): 2616-2622, doi: 10.6038/pg20150620.
    Chen Y X. 1995. The effect of application of ground microgravity survey to geological hazard exploration[J]. Carsologica Sinica (in Chinese), 14(2): 176-185.
    Chen Y X, Gan F P, Lu C J, et al. 2013. The self-potential method and its application in karst collapses[J]. Carsologica Sinica (in Chinese), 32(4): 480- 486.
    Gan F P, Han K, Lan F N, et al. 2017. Multi-geophysical approaches to detect karst channels underground-a case study in Mengzi of Yunnan Province, China[J]. J. Appl. Geophys, 136: 91-98, doi: 10.1016/j.jappgeo.2016.10.036.
    Gao Z J, Ma H H, Wang M, et al. 2009. Preliminary analysis on forecasting model of karst collapse[J]. THE CHINESE JOURNAL OF GEOLOGICAL HAZARD AND CONTROL (in Chinese), 20(4): 66-71, doi: 10.16031/j.cnki.issn.1003-8035.2009.04.008.
    Guo D D, Zhao L H, Gao Z J. 2011. High-density electrical method used in the application of karst collapse of Taian,Yanglou-Jiuxian[J]. UNDERGROUND Water (in Chinese), 33(2): 108-110.
    He K Q, Wang B, Wan J T. 2002. Study on forming mechanism of Zaozhuang karst collapse and collapse model[J]. Rock and Soil Mechanics (in Chinese), 23(5): 564-569, doi: 10.16285/j.rsm.2002.05.008.
    He Y, Deng Z, Zhou L, et al. 2013. The application of integrated geophysical methods to surface collapse exploration in Yuejiaqiao[J]. Chinese Journal of Engineering Geophysics (in Chinese), 10(6): 814-821.
    Jiang X Z. 2008. Integrated research for karst soil-void(sinkhole collapse)hazard of linear engineering[Ph.D. thesis]. Beijing: China University of Geosciences (in Chinese).
    Jin X W, Chen Z H, Zeng B, et al. 2013. Preliminary thinking of quantitative research on the mechanism of karst collapse[J]. Carsologica Sinica (in Chinese), 32(4): 437- 446.
    Kaufmann G. 2014. Geophysical mapping of solution and collapse sinkholes[J]. J. Appl. Geophys, 111: 271-288, doi: 10.1016/j.jappg eo.2014.10.011.
    Kaufmann G, Romanov D. 2016. Structure and evolution of collapse sinkholes: combined interpretation from physico-chemical modeling and geophysical field work[J]. J. Hydrol, 540: 688-698, doi: 10.1016/j.jhydr ol.2016.06.050.
    Lei M T, Jiang X Z, Li Y. 2002. New advances in karst collapse research in China[J]. Environmental Geology, 42(5): 462- 468.
    Lei M T, Jiang X Z, Li Y. 2002. Study on the simulation, assessment and management method of karst collapse[J]. J. Geol. Hazards Environ. Preserv. (in Chinese), 13(1): 18-22.
    Liu J M, Zheng W Z. 2002. Neotectonic fault control on karst sinking in Laiwu iron ore field[J]. Contrib. Geol. Miner. Resour. Res. (in Chinese), 17(4): 282-286.
    Liu W, Gan F P, Zhang W, et al. 2015. Application of geophysical prospecting to karst collapse in red bed area[J]. Progress in Geophysics (in Chinese), 30(6): 2923-2930, doi: 10.6038/pg20150661.
    Liu W, Gan F P, Zhao W, et al. 2014. Application analysis of combining high density resistivity and microtremor survey methods in areas of karst collapse: A case study of the collapse in Jili village, Laibin, Guangxi[J]. Carsologica Sinica (in Chinese), 33(1): 118-122.
    Liu Y F, Wang Z T, Gao F, et al. 2012. Analysis on characteristics and origins of Karst collapse in Quanhe area of Laiwu city[J]. Land and Resources in Shangdong Province (in Chinese), 28(9): 18-20.
    Pierre T, Nicole D, Ardnand B. 2005. Geophysical and geological characterisation of karst hazards in urban environments: application to Orléans[J]. Bulletin of Engineering Geology and the Environment (in France), 64(2): 139-150.
    Qian H T, Wang S J, Yan F Z, et.al. 2011. Interconnection of karst systems and flow piracy through karst collapse in layered carbonate rocks[J]. Environmental Earth Sciences, 64(6): 1563-1574.
    Wang Y L. 2016. Research on influential factors of the karst collapse in the Tai-Lai Basin of Shandong Province[J]. Carsologica Sin. (in Chinese), 35(1): 60-66, doi: 10.11932/karst20160109.
    Wang Y L, Chen W Q, Jiang X Z, et al. 2015. Development features and formation mechanisms of karst collapses in the Tai-Lai Basin, Shandong Province[J]. Carsologica Sin. (in Chinese), 34(5): 495-506, doi: 10.11932/karst201515y01.
    Xiao M G. 2005. The forming mechanism and foreast of fatalness about karst subsidence in Guilin City[Ph.D. thesis]. Changchun: Jilin University (in Chinese).
    Xiong Z T, Zhao D J, Wen M X, et al. 2014. The application of comprehensive geophysical prospecting in karst collapse investigation, Wuhan city[J]. Resources Environment & Engineering (in Chinese), 28(2): 188-192.
    Xu J S, Deng B. 2012. Application of synthetical geophysical method to ground collapse zone research of Baoding Xiangyang village[J]. The Chinese Journal of Geological Harzard and Control (in chinese), 23(4): 99-103.
    Xu W G, Zhao G R. 1981. The implication of suction action for ground subsidence in karst mining areas[J]. Geol. Rev. (in chinese), 27(2): 174-180, doi: 10.16509/j. georeview.1981.02.014.
    Yu Q C, Shen J F. 1991. On mechanism of karst collapse[J]. J. Geol. Hazard Control (in Chinese), 2(1): 97-102, doi: 10.16031 /j.cnki.issn.1003-8035.1991.01.012.
    Zhang J G, Xia X Y, Wang H S, et al. 2011. Application effect of comprehensive geophysical method in karst collapse area[J]. Site investigation Science and Technology (in Chinese), (1): 56-68.
    Zhang W, Gan F P, Liang D H, et al. 2016. Application of microtremor exploration in quick inspection of overburden layer thickness in karst collapse area[J]. Yangtze River (in Chinese), 47(24): 51-54.
    Zhang W, Gan F P, Liang D H, et al. 2018. Joint inference of multi-channel transient surface wave method and microtremor method to investigate the structure and thickness of the overburden layer in the typical area of karst collapse[J]. Carsologica Sinica (in Chinese), 37(2): 272-279.
    Zheng Z J, Ao W L, Zeng J, et al. 2017a. Application of integrated geophysical methods to karst collapse investigation in the Sijiao village near Liuzhou[J]. Hydrogeology & Engieering Geology (in chinese), 44(5): 143-149.
    Zheng Z J, Zhang W, Zeng J, et al. 2017b. Application research of integrated geophysical methods to karst seepage investigation in carbonaceous limestone reservoir area[J]. Progress in Geophysics (in Chinese), 32(5): 2268-2273, doi: 10.6038/pg20170558.
    Zhou W F. 1997. The formation of sinkholes in karst mining areas in China and some methods of prevention[J]. Environ Geol., 31(1-2): 50-58, doi: 10.1007/s002540050163.
    Zhou W F, Beck B F, Adams A L. 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography[J]. Environ Geol., 42(8): 922-928, doi: 10.1007/s00254- 002- 0594-z.
    陈昌彦, 白朝旭, 宋连亮, 等. 2010. 多道瞬态瑞雷波技术在公路采空塌陷区探测中应用[J]. 地球物理学进展, 25(2): 701-708, doi: 10.3969/j.issn.1004-2903.2010.02.045.
    陈玉玲, 韩凯, 陈贻祥, 等. 2015. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 30(6): 2616-2622, doi: 10.6038/pg20150620.
    陈贻祥. 1995. 地面微重力方法在地质灾害调查中的应用效果[J]. 中国岩溶, 14(2): 176-185.
    陈贻祥, 甘伏平, 卢呈杰, 等. 2013. 岩溶塌陷自然电场及其应用[J]. 中国岩溶, 32(4): 480- 486.
    高宗军, 马海会, 王敏, 等. 2009. 岩溶地面塌陷预测模型初探[J]. 中国地质灾害与防治学报, 20(4): 66-71.https://doi.org/10.16031/j.cnki.issn.1003-8035. 2009.04.008.
    郭栋栋, 赵俐红, 高宗军. 2011. 高密度电法在泰安羊娄-旧县岩溶塌陷探测中的应用[J]. 地下水, 33(2): 108-110.
    贺可强, 王滨, 万继涛. 2002. 枣庄岩溶塌陷形成机理与致塌模型的研究[J]. 岩土力学, 23(5): 564-569, doi: 10.16285/j.rsm.2002.05.008.
    何禹, 邓专, 周磊, 等. 2013. 综合物探法在益阳市岳家桥镇地面塌陷勘查中的应用[J]. 工程地球物理学报, 10(6): 814-821.
    蒋小珍. 2008. 线性工程路基岩溶土洞(塌陷)灾害防治综合研究[博士论文]. 北京: 中国地质大学.
    金晓文, 陈值华, 曾斌, 等. 2013. 岩溶塌陷机理定量研究的初步思考[J]. 中国岩溶, 32(4): 437- 446.
    雷明堂, 蒋小珍, 李瑜. 2002. 岩溶塌陷试验、评估与管理方法研究[J]. 地质灾害与环境保护, 13(1): 18-22.
    刘建茂, 郑文忠. 2002. 新构造断裂对莱芜铁矿田中岩溶地面塌陷的控制作用[J]. 地质找矿论丛, 17(4): 282-286.
    刘伟, 甘伏平, 张伟, 等. 2015. 红层区岩溶塌陷调查地球物理勘探技术应用研究[J], 地球物理学进展, 30(6): 2923-2930, doi: 10.6038/pg20150661.
    刘伟, 甘伏平, 赵伟, 等. 2014. 高密度电法与微动技术组合在岩溶塌陷分区中的应用分析—以广西来宾吉利塌陷为例[J]. 中国岩溶, 33(1): 118-122.
    刘妍芳, 王振涛, 高峰, 等. 2012. 莱芜市泉河地区岩溶塌陷特征及成因分析[J]. 山东国土资源, 28(9): 18-20.
    王延岭. 2016. 山东省泰莱盆地岩溶地面塌陷影响因素分析[J]. 中国岩溶, 35(1): 60-66, doi: 10.11932/karst20160109.
    王延岭, 陈伟清, 蒋小珍, 等. 2015. 山东省泰莱盆地岩溶塌陷发育特征及形成机理[J]. 中国岩溶, 34(5): 495-506, doi: 10.11932/karst201515y01.
    肖明贵. 2005. 桂林市岩溶塌陷形成机制与危险性预测[博士论文]. 长春:吉林大学.
    熊志涛, 赵德君, 文美霞, 等. 2014. 综合物探方法在武汉市毛坦港塌陷勘查中的应用[J]. 资源环境与工程, 28(2): 188-192.
    徐锦山, 邓波. 2012. 综合物探方法在河北保定向阳村地面塌陷区调查中的应用[J]. 中国地质灾害与防治学报, 23(4): 99-103.
    徐卫国, 赵桂荣. 1981. 试论岩溶矿区地面塌陷的真空吸蚀作用[J]. 地质论评, 27(2): 174-180, doi: 10.16509/jgeoreview.1981.02.014.
    于青春, 沈继方. 1991. 岩溶地面塌陷机理分析[J]. 地质灾害与防治, 2(1): 97-102, doi: 10.16031/j.cnki.issn.1003-8035.1991.01.012.
    张进国, 夏训银, 王洪生, 等. 2011. 岩溶塌陷区综合物探方法的应用效果[J]. 勘察科学技术, (1): 56-58.
    张伟, 甘伏平, 梁东辉, 等. 2016. 利用微动法快速探测岩溶塌陷区覆盖层厚度[J]. 人民长江, 47(24): 51-54.
    张伟, 甘伏平, 梁东辉, 等. 2018. 多道瞬态面波法与微动法联合推断岩溶塌陷区覆盖层的结构和厚度分布[J]. 中国岩溶, 37(2): 272-279.
    郑智杰, 敖文龙, 曾洁, 等. 2017a. 综合物探法在柳州泗角村岩溶塌陷区调查中的应用[J]. 水文地质工程地质, 44(5): 143-149.
    郑智杰, 张伟, 曾洁, 等. 2017b. 综合物探方法在碳质灰岩库区岩溶渗漏带调查中的应用研究[J].地球物理学进展, 32(5): 2268-2273, doi: 10.6038/pg20170558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700