大型相变热交换器壳程蒸汽流动数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Shell Side Water Vapor Flow in Large-scale Phase Heat Exchanger
  • 作者:周帆 ; 虞斌 ; 周梦
  • 英文作者:ZHOU Fan;YU Bin;ZHOU Meng;School of Mechanical and Power Engineering, Nanjing Tech University;
  • 关键词:热交换器 ; 导流板 ; 壳程 ; 流动 ; 数值模拟
  • 英文关键词:heat exchanger;;baffle;;shell side;;flow;;numerical simulation
  • 中文刊名:SYSB
  • 英文刊名:Petro-Chemical Equipment
  • 机构:南京工业大学机械与动力工程学院;
  • 出版日期:2019-07-25
  • 出版单位:石油化工设备
  • 年:2019
  • 期:v.48;No.315
  • 语种:中文;
  • 页:SYSB201904005
  • 页数:7
  • CN:04
  • ISSN:62-1078/TQ
  • 分类号:32-38
摘要
在大型相变热交换器壳程添加纵向导流板结构,采用Fluent软件对壳程蒸汽流动进行数值模拟计算,分析研究纵向导流板尺寸对热交换器壳程流场分布、阻力性能、传热性能及综合性能的影响规律。数值模拟结果表明,因纵向导流板使蒸汽纵向冲刷管束,充分利用整个管束区进行热交换,故热交换器壳程蒸汽流场分布及换热效果较无导流板更好。采用纵向导流板结构可显著降低热交换器壳程压降、明显提高热交换器传热系数,使热交换器的综合性能得到有效提高。
        The longitudinal baffle structure was designed on the shell side of a large phase change heat exchanger and Fluent software was used to conduct numerical simulation calculation on the steam flow in the shell side,the influence rule of the longitudinal guide plate size on the flow field distribution,resistance performance,heat transfer performance and comprehensive performance of the shell side heat exchanger was studied. The numerical simulation results show that by the effect of the longitudinal baffles,the steam flushed the tube bundle in the longitudinal direction and the entire tube bundle area is fully utilized for heat exchanging. The distribution and heat transfer effect of the shell-side steam flow field is better than that without the baffles. After adopting the longitudinal baffle structure,the pressure drop of the shell side of the heat exchanger can be significantly reduced with significant improvement on the heat exchange coefficient and the comprehensive performance of the heat exchanger.
引文
[1] 陈永东,陈学东.我国大型换热器的技术进展[J].机械工程学报,2013,49(10):134-143.
    [2] 王峰.浅谈大型换热器的技术进展[J].科技经济市场,2015(6):7-8.
    [3] Anas EI Maakoul,Azzedine Laknizi.Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole,helical and segmental baffles[J].Applied thermal engineering,2016(109):175-185.
    [4] 胡琼.管壳式换热器冷凝传热研究与数值模拟[D].武汉:华中科技大学,2011.
    [5] 揭涛,张世程,匡建平,等.大型管壳式换热器数值模拟分析[J].能源工程,2015(2):64-67,72.
    [6] 曾文良.大型轴流管壳式换热器流动与传热的若干关键问题研究[D].广州:华南理工大学,2009.
    [7] Mahmoud Galal Yehia,Ahmed A A Attia.Heat transfer and friction characteristics of shell and tube heat exchanger with multi inserted swirl vanes[J].Applied thermal engineering,2016(102):1481-1491.
    [8] 蒋夫花.大型轴流管壳式换热器中的深度换热[D].广州:华南理工大学,2011.
    [9] Xiang-hui Tan,Dong-sheng Zhu,Guo-yan Zhou.3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger[J].International journal of heat and mass transfer,2013(65):244-253.
    [10] 严乐荣.复合相变换热器在电厂锅炉烟气余热回收中的应用[J].能源研究与利用,2012(4):44-46.
    [11] 谭雪娇.含不凝性气体的蒸汽冷凝数值模拟[D].大连:大连理工大学,2015.
    [12] Seong-Su Jeon,Seong-Jin Kim,Goon-Cherl Park.Numerical study of condensing bubble in subcooled boiling flow using volume of fluid mode[J].Chemical engineering science,2011:5899-6909.
    [13] 袁世平.含有不凝性气体的蒸汽凝结现象的研究[D].北京:中国原子能科学研究院,2001.
    [14] 黄建.蒸汽在高分压不凝气体中扩散流动的传质研究[D].北京:北京科技大学,2016.
    [15] Yonghua You,Yuqi Chen,Mengqian Xie.Numerical simulation and performance improvement for a small size shell-and-tube heat exchanger with trefoil-hole baffles[J].Applied thermal engineering,2015(89):220-228.
    [16] 曾文良,邓先和.并流多通道管壳式换热器壳程流场分布[J].化工学报,2011,62(12):3352-3360.
    [17] 付磊,唐克伦,文华斌,等.管壳式换热器流体流动与耦合传热的数值模拟[J].化工进展,2012,31(11):2384-2389.
    [18] J Bala Bhaskara Rao,V Ramachandra Raju.Estimation and optimization of heat transfer and overall pressure drop for a shell and tube heat exchanger[J].Journal of mechanical science and technology,2017(31):375-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700