典型参数对盘缘封严性能综合影响机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Integrated Influence Mechanism of Typical Parameters on Sealing Effectiveness of Rim Seal
  • 作者:董伟林 ; 王锁芳 ; 夏子龙
  • 英文作者:DONG Wei-lin;WANG Suo-fang;XIA Zi-long;Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:盘缘封严 ; 燃气入侵 ; 羁绊效果 ; 内环型
  • 英文关键词:Rim seal;;Ingestion;;Fetter effect;;Inner ring
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院航空发动机热环境与热结构工业和信息化部重点实验室;
  • 出版日期:2019-02-01 10:41
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.264
  • 基金:江苏省普通高校研究生科研创新计划项目(KYLX16_0356);; 中央高校基本科研业务费专项资金
  • 语种:中文;
  • 页:TJJS201906012
  • 页数:7
  • CN:06
  • ISSN:11-1813/V
  • 分类号:99-105
摘要
为了掌握典型参数对盘缘封严燃气入侵的综合影响机制,采用数值方法研究并揭示了燃气入侵形式与封严间隙涡系结构的内在联系,在此基础上设计了一种内环型盘缘封严结构。结果表明:增加转速和增加主流流量都会导致封严效率降低,但是二者的作用却是相互羁绊的;与传统孔口模型相比,内环型盘缘封严结构能够有效将回流区涡限制在封严间隙内,利用羁绊效应拓宽了高封严效率区域的工况范围,提高了盘缘封严性能。
        In order to have a good understanding of the integrated influence mechanism of the typical pa-rameters on sealing effectiveness of rim seal,the internal relationship between the ingestion form and the vortexstructure in sealing gap was studied and revealed by numerical method. On this basis,an inner ring rim seal wasdesigned. The results show that not only increasing rotation speed but also increasing mainstream mass flow willlead to the reduction of the sealing efficiency,but the role of the two is to fetter each other. Compared with con-ventional orifice model,the inner ring rim seal utilize fetter effect to widen the work condition range of the highsealing efficiency by restricting the recirculation vortex in the sealing gap. Thus the sealing effectiveness was im-proved.
引文
[1] Bohn D,Decker A,Ma H,et al. Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine[R]. ASME GT 2003-38459.
    [2] Dittmann M,Dullenkopf K,Wittig S. Discharge Coefficients of Rotating Short Orifices with Radiused and Chamfered Inlets[J]. Journal of Engineering for Gas Turbines&Power,2004,126(4):803-808.
    [3] Bricaud C,Richter B,Dullenkopf K,et al. Stereo PIV Measurements in an Enclosed Rotor-Stator System with Pre-Swirled Cooling Air[J]. Experiments in Fluids,2005,39(2):202-212.
    [4] Bohn D E,Decker A,Ohlendorf N,et al. Experimental Investigations of the Influence of Sealing Air Mass Flow on the Adiabatic Wall Temperature Distribution on the Surface of the Rotor Blisk in a 1.5 Stage Turbine[R].ASME GT 2006-90453.
    [5] Da S,Andreini F. Turbine Stator Well CFD Studies:Effects of Coolant Supply Geometry on Cavity Sealing Performance[R]. ASME GT 2009-59186.
    [6] Jeffrey A D,Antonio G V,Andreas B,et al. Heat Transfer in Turbine Hub Cavities Adjacent to the Main Gas Path[R]. ASME GT 2010-22130.
    [7] Eastwood D,Coren D D,Long C A,et al. Experimental Investigation of Turbine Stator Well Rim Seal,Re-Ingestion and Interstage Seal Flows Using Gas Concentration Techniques and Displacement Measurements[R]. ASME GT 2011-45874.
    [8] Idris A,Pullen K,Barnes D. An Investigation into the Flow Within Inclined Rotating Orifices and the Influence of Incidence Angle on the Discharge Coefficient[J]. Journal of Power&Energy,2004,218(1):55-68.
    [9] Owen J M. Prediction of Ingestion through Turbine Rim Seals,Part 1:Rotationally-Induced Ingress[J]. Journal of Turbomachinery,2009,131(3):1083-1093.
    [10] Owen J M. Prediction of Ingestion Through Turbine Rim Seals,Part 2:Externally Induced and Combined Ingress[J]. Journal of Turbomachinery,2011,133(2):1983-1995.
    [11] Chew J W,Green T,Turner A B. Rim Sealing of RotorStator Wheel Spaces in the Presence of External Flow[J].Journal of Turbomachinery,1992,114(2):433-438.
    [12] Ko S H,Rhode D L. Disk Temperature Details of Rim Seal Turbulent Heat Diffusion and Disk Frictional Heating[J]. Journal of Propulsion and Power,2015,15(2):280-287.
    [13]朱莉娅,罗翔,徐国强,等.涡轮级燃气入侵的理论分析及数值模拟[J].推进技术,2014,35(11):1511-1516.(ZHU Li-ya,LUO Xiang,XU Guo-qiang,et al. A Theoretical and Numerical Study of Turbine Rim Seal Ingestion[J]. Journal of Propulsion Technology,2014,35(11):1511-1516.)
    [14]董伟林,王锁芳,夏子龙.一种盘缘篦齿临界特性的数值分析和试验验证[J].推进技术,2016,37(1):34-39.(DONG Wei-lin,WANG Suo-fang,XIA Zilong. Numerical Analysis and Experimental Validation of Critical Sealing Characteristics of Rim Seal[J]. Journal of Propulsion Technology,2016,37(1):34-39.)
    [15]吴康,林立,任静,等.端壁侧向出流对透平轮缘密封的影响及优化[J].推进技术,2014,35(6):758-765.(WU Kang,LIN Li,REN Jing,et al. Analysis and Optimization of Interation Between Endwall Flank Flow and Turbine Rotor-Stator Rim Seal[J]. Journal of Propulsion Technology,2014,35(6):758-765.)
    [16] Li J,Gao Q,Li Z G. Numerical Investigations on the Sealing Effectiveness of Turbine Honeycomb Radial Rim Seal[J]. Journal of Engineering for Gas Turbines&Power,2016,138(10):1-16.
    [17] Roy R P,Xu G,Feng J. Pressure Field and MainStream Gas Ingestion in a Rotor-Stator Disk Cavity[R].ASME GT 2001-0564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700