平板式螺旋相位板的设计与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and application of flat spiral phase
  • 作者:吴文兵 ; 圣宗强 ; 吴宏伟
  • 英文作者:Wu Wen-Bing;Sheng Zong-Qiang;Wu Hong-Wei;School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology;National Laboratory of Solid State Microstructures, Nanjing University;
  • 关键词:轨道角动量 ; 螺旋相位板 ; 涡旋光束 ; 坐标变换
  • 英文关键词:orbital angular momentum;;spiral phase plate;;vortex beam;;coordinate transformation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:安徽理工大学力学与光电物理学院;南京大学固体微结构物理国家重点实验室;
  • 出版日期:2019-02-28 15:40
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:固体微结构物理国家重点实验室开放课题(批准号:M31041);; 国家自然科学基金(批准号:11847002)资助的课题~~
  • 语种:中文;
  • 页:WLXB201905011
  • 页数:6
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:96-101
摘要
传统的螺旋相位板是一种利用沿方位角方向介质材料高度递增实现对光束相位调控产生涡旋光束的光学器件,由于这种特殊的几何结构特征使其不能通过相位板的叠加而调控出射光束所携带的角量子数.本文基于坐标变换方法将介质材料沿方位角方向折射率不变而高度递增的传统螺旋相位板变换为一种介质材料沿方位角方向高度不变而折射率递增的平板式螺旋相位板.通过理论分析与数值模拟,发现本文所设计的平板式螺旋相位板不仅与传统螺旋相位板一样能够产生高质量的涡旋光束,而且平板式螺旋相位板的高度和涡旋光束携带的角量子数可以根据介质材料的折射率选取而任意调节.为了实际应用的需要,可以通过叠加多层平板式螺旋相位板以获得不同角量子数的涡旋光束.这种平板式螺旋相位板在光传输、光通信等领域具有广阔的潜在应用价值.
        Phase is an important characteristic of electromagnetic waves. It is well known that a beam with a helical wave front characterized by a phase of has a momentum component along the azimuthal direction, resulting in an orbital angular momentum of per photon along the beam axis. Owing to its fascinating properties, the beam has received a great deal of attention and has provided novel applications in manipulation of particles or atoms, optical communication, optical data storage. In order to meet the needs of various applications, techniques for efficiently generating optical beams carrying orbital angular momentum are always required. Current schemes for generating the beams carrying orbital angular momentum include computer-generated holograms, spiral phase plates, spatial light modulators,and silicon integrated optical vortex emitters. Among the usual methods to produce helical beams, the traditional spiral phase plate is an optical device that utilizes the progressive increasing of height of a dielectric material along an azimuthal direction to produce a vortex beam for beam phase modulation with a high conversion efficiency. However, it is difficult to regulate the topological charge l of the outgoing beam through the superposition of the phase plates due to the special geometric feature. In this paper, the flat spiral phase plate is designed by compressing the height of traditional spiral phase plate, and inducing the refractive index to increase in the azimuthal direction based on coordinate transformation. By means of theoretical analysis and numerical simulation, it is found that the flat spiral phase plate can produce high quality vortex beams just as the traditional spiral phase plate can do. Particularly, the height of the flat spiral phase plate and the topological charge l carried by the vortex beams can be arbitrarily adjusted according to the refractive index selection of the dielectric material. In order to meet the needs of practical applications, the vortex beams with different topological charges can be obtained by stacking multiple layers of flat spiral phase plates. The flat spiral phase plate has broad potential applications in the fields of optical transmission and optical communication.
引文
[1]Padgett M,Courtial J,Allen L 2004 Phys.Today 57 35
    [2]Su Z K,Wang F Q,Lu Y Q,Jin R B,Liang R S,Liu S H2008 Acta Phys.Sin.57 3016(in Chinese)[苏志锟,王发强,路轶群,金锐博,梁瑞生,刘颂豪2008物理学报57 3016]
    [3]Allen L,Beijersbergen M W,Spreeuw R J C,Woerdman J P1992 Phys.Rev.A 45 8185
    [4]Chen L X,Zhang Y Y 2015 Acta Phys.Sin.64 164210(in Chinese)[陈理想,张远颖2015物理学报64 164210]
    [5]Grier D G 2003 Nature 424 810
    [6]Andersen M F,Ryu C,Clade P,Natarajan V,Vaziri A,Helmerson K,Phillips W D 2006 Phys.Rev.Lett.97 170406
    [7]Gibson G,Courtial J,Padgett M J,Vasnetsov M,Pas'ko V,Barnett S M,Franke-Arnold S 2004 Opt.Express 12 5448
    [8]Molina-Terriza G,Torres J P,Torner L 2007 Nature Phys.3305
    [9]Torner L,Torres L P,Carrasco S 2005 Opt.Express 13 873
    [10]Dholakia K,Cizmar T 2011 Nat.Photonics 5 335
    [11]Bazhenov V Y,Vasnetsov M V,Soskin M S 1990 JETP Lett.52 429
    [12]Heckenberg N R,McDuff R,Smith C P,White A G 1992Opt.Lett.17 221
    [13]Beijersbergen M W,Coerwinkel R P C,Kristensen M,Woerdman J P 1994 Opt.Commun.112 321
    [14]Fan Q B,Xu T 2017 Acta Phys.Sin.66 144208(in Chinese)[范庆斌,徐挺2017物理学报66 144208]
    [15]Li M,Chen Y,Guo G C,Ren X F 2017 Acta Phys.Sin.66144202(in Chinese)[李明,陈阳,郭光灿,任希峰2017物理学报66 144202]
    [16]Chen L X,She W L 2009 Opt.Lett.34 178
    [17]Oemrawsingh S S R,van Houwelingen J A W,Eliel E R,Woerdman J P,Verstegen E J K,Kloosterboer J G,Hooft GW't 2004 Appl.Opt.43 688
    [18]Kotlyar V V,Khonina S N,Kovalev A A,Soifer V A 2006Opt.Lett.31 1597
    [19]Lee W M,Yuan X C,Cheong W C 2004 Opt.Lett.29 1796
    [20]Rotschild C,Zommer S,Moed S,Hershcovitz O,Lipson S G2004 Appl.Opt.43 2397
    [21]Liu G C,Li C,Shao J J,Fang G Y 2014 Acta Phys.Sin.63154102(in Chinese)[刘国昌,李超,邵金进,方广有2014物理学报63 154102]
    [22]Wang H B,Luo X Y,Dong J F 2015 Acta Phys.Sin.64154102(in Chinese)[汪会波,罗孝阳,董建峰2015物理学报64 154102]
    [23]Pendry J B,Schurig D,Smith D R 2006 Science 312 1780
    [24]Lai Y,Chen H Y,Zhang Z Q,Chan C T 2009 Phys.Rev.Lett.102 093901
    [25]Li J,Pendry J B 2008 Phys.Rev.Lett.101 203901
    [26]Zhao J Z,Wang D L,Peng R W,Hu Q,Wang M 2011 Phys.Rev.E 84 046607
    [27]Lai Y,Chen H,Zhang Z Q,Chan C T 2009 Phys.Rev.Lett.102 253902
    [28]Jiang W X,Ma H F,Cheng Q,Cui T J 2010 Appl.Phys.Lett.96 121910
    [29]Rahm M,Schurig D,Roberts D A,Cummer S A,Smith D R,Pendry J B 2008 Photonics Nanostruct.Fundam.Appl.6 87
    [30]Ma H F,Cui T J 2010 Nat.Commun.1 124
    [31]Smith D R,Mock J J,Starr A F,Schurig D 2005 Phys.Rev.E 71 036609
    [32]Mei Z L,Bai J,Cui T J 2010 Appl.Phys.43 055404
    [33]Ma H F,Cai B J,Zhang T X,Yang Y,Jiang W X,Cui T J2013 IEEE Trans.Antennas Propag.61 2561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700