N末端改造提高GH11家族木聚糖酶热稳定性的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances in Improvement of GH11 Xylanases Thermostability by N-Terminal Modi?cation
  • 作者:侯洁 ; 蒋玥凤 ; 熊科 ; 杨然 ; 李秀婷
  • 英文作者:HOU Jie;JIANG Yuefeng;XIONG Ke;YANG Ran;LI Xiuting;Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University;School of Food and Chemical Engineering, Beijing Technology and Business University;Beijing Engineering and Technology Research Center of Food Additives,Beijing Technology and Business University;
  • 关键词:GH11家族木聚糖酶 ; 热稳定性 ; 影响因素 ; N末端改造
  • 英文关键词:GH11 xylanases;;thermostability;;factors;;N-terminal modi?cation
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:北京工商大学北京食品营养与人类健康高精尖创新中心;北京工商大学食品学院;北京工商大学北京市食品添加剂工程技术研究中心;
  • 出版日期:2018-01-12 16:51
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.592
  • 基金:国家自然科学基金面上项目(31371723;31671798);国家自然科学基金青年科学基金项目(31501416)
  • 语种:中文;
  • 页:SPKX201903043
  • 页数:7
  • CN:03
  • ISSN:11-2206/TS
  • 分类号:302-308
摘要
木聚糖酶具有重要的工业应用价值,在食品、饲料、造纸等领域有着良好的发展前景。不同应用领域对木聚糖酶的酶学性质具有不同要求,耐热性是木聚糖酶在实际生产过程中最有应用价值的性质之一;因此,许多研究者致力于木聚糖酶耐热性机制的研究。研究发现GH11家族木聚糖酶的热稳定性与其N末端区域密切相关,可以通过N末端改造的策略有效提升GH11家族木聚糖酶的热稳定性。本文主要综述了影响GH11家族木聚糖酶热稳定性的因素、N末端改造提升木聚糖酶热稳定性的技术和方法,并对耐热木聚糖酶的应用前景进行展望,以期为GH11家族木聚糖酶的耐热性研究提供一定的参考。
        Xylanases have great potential industrial applications and are promising in the food, feed and paper-making industries. The application of xlanases in different fields is due to their versatile enzymatic properties, especially the outstanding thermostability. Therefore, the heat resistance mechanism of xylanases attracts much research interest.The thermostability of GH11 xylanases has been closely related to their N-terminal region, and many researchers have successfully constructed thermophilic xylanases by N-terminal modi?cation. This paper reviews the factors in?uencing the thermostability of GH11 xylanases and the different techniques and methods used for N-terminal modi?cation of xylanase for improving heat resistance, and prospects for possible future applications are discussed. This review is expected to provide valuable information for improving the thermostability of GH11 family xylanases.
引文
[1]BEG Q K,KAPOOR M,MAHAJAN L,et al.Microbial xylanases and their industrial applications:a review[J].Applied Microbiology and Biotechnology,2001,56(3/4):326-338.DOI:10.1007/s002530100704.
    [2]SAHA B C.Hemicellulose bioconversion[J].Journal of Industrial Microbiology and Biotechnology,2003,30(5):279-291.DOI:10.1007/s10295-003-0049-x.
    [3]COLLINS T,GERDAY C,FELLER G.Xylanases,xylanase families and extremophilic xylanases[J].FEMS Microbiology Reviews,2005,29(1):3-23.DOI:10.1016/j.femsre.2004.06.005.
    [4]LOMBARD V,RAMULU H G,DRULA E,et al.The carbohydrateactive enzymes database(CAZy)in 2013[J].Nucleic Acids Research,2014,42:D490-D495.DOI:10.1093/nar/gkt1178.
    [5]JUTURU V,WU J C.Microbial xylanases:engineering,production and industrial applications[J].Biotechnology Advances,2012,30(6):1219-1227.DOI:10.1016/j.biotechadv.2011.11.006.
    [6]POLIZELI M L,RIZZATTI A C,MONTI R,et al.Xylanases from fungi:properties and industrial applications[J].Applied Microbiology and Biotechnology,2005,67(5):577-591.DOI:10.1007/s00253-005-1904-7.
    [7]SUN J Y,LIU M Q,XU Y L,et al.Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement[J].Protein Expression&Purification,2005,42(1):122-130.DOI:10.1016/j.pep.2005.03.009.
    [8]RULLER R,DELIBERTO L,FERREIRA T L,et al.Thermostable variants of the recombinant xylanase a from Bacillus subtilis,produced by directed evolution show reduced heat capacity changes[J].Proteinsstructure Function&Bioinformatics,2007,70(4):1280-1293.DOI:10.1002/prot.21617.
    [9]WANG J Q,TAN Z B,WU M C,et al.Improving the thermostability of a mesophilic family 10 xylanase,AuXyn10A,from Aspergillus usamii by in silico design[J].Journal of Industrial Microbiology and Biotechnology,2014,41(8):1217-1225.DOI:10.1007/s10295-014-1463-y.
    [10]LI H,VOUTILAINEN S,OJAMO H,et al.Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature[J].Enzyme and Microbial Tchnology,2015,70:66-71.DOI:10.1016/j.enzmictec.2014.12.011.
    [11]MCCARTER J D,WITHERS S G.Mechanisms of enzymatic glycoside hydrolysis[J].Current Opinion in Structural Biology,1994,4(6):885-892.DOI:10.1016/0959-440X(94)90271-2.
    [12]FONSECAMALDONADO R,VIEIRA D S,ALPONTI J S,et al.Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase[J].Journal of Biological Chemistry,2013,288(35):25522-25534.DOI:10.1074/jbc.M113.485953.
    [13]PA?S G,BERRIN J G,BEAUGRAND J.GH11 xylanases:structure/function/properties relationships and applications[J].Biotechnology Advances,2012,30(3):564-592.DOI:10.1016/j.biotechadv.2011.10.003.
    [14]YEGIN S.Single-step purification and characterization of an extreme halophilic,ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry[J].Food Chemistry,2017,221:67-75.DOI:10.1016/j.foodchem.2016.10.003.
    [15]DRISS D,BHIRI F,ELLEUCH L,et al.Purification and properties of an extracellular acidophilic endo-1,4-β-xylanase,naturally deleted in the“thumb”,from Penicillium occitanis Pol6[J].Process Biochemistry,2011,46(6):1299-1306.DOI:10.1016/j.procbio.2011.02.022.
    [16]VERJANS P,DORNEZ E,DELCOUR J A,et al.Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11Aureobasidium pullulans xylanase[J].Food Chemistry,2010,123(2):331-337.DOI:10.1016/j.foodchem.2010.04.039.
    [17]OHTA K,MORIYAMA S,TANAKA H,et al.Purification and characterization of an acidophilic xylanase from Aureobasidium pullulans var.melanigeum and sequence analysis of the encoding gene[J].Journal of Bioscience&Bioengineering,2001,92(3):262-270.DOI:10.1016/S1389-1723(1)80260-7.
    [18]DENG P,LI D F,CAO Y H,et al.Cloning of a gene encoding an acidophilic endo-β-1,4-xylanase obtained from Aspergillus niger CGMCC1067 and constitutive expression in Pichia pastoris[J].Enzyme and Microbial Technology,2006,39(5):1096-1102.DOI:10.1016/j.enzmictec.2006.02.014.
    [19]ITO K,OGASAWARA H,SUGIMOTO T,et al.Purification and properties of acid stable xylanases from Aspergillus kawachii[J].Bioscience Biotechnology&Biochemistry,1992,56(4):547-550.DOI:10.1271/bbb.56.547.
    [20]BELI?N T,VAN CAMPENHOUT S,VAN ACKER M,et al.Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat[J].Biochemical and Biophysical Research Communications,2005,327(2):407-414.DOI:10.1016/j.bbrc.2004.12.036.
    [21]PURMONEN M,VALJAKKA J,TAKKINEN K,et al.Molecular dynamics studies on the thermostability of family 11 xylanases[J].Protein Engineering Design and Selection,2007,20(11):551-559.DOI:10.1093/protein/gzm056.
    [22]VIEIRA D S,DEGREVE L.An insight into the thermostability of a pair of xylanases:the role of hydrogen bonds[J].Molecular Physics,2009,107(1):59-69.DOI:10.1080/00268970902717959.
    [23]VOGT G,WOELL S,ARGOS P.Protein thermal stability,hydrogen bonds,and ion pairs[J].Journal of Molecular Biology,1997,269(4):631-643.DOI:10.1006/jmbi.1997.1042.
    [24]KUMAR S,TSAI C J,NUSSINOV R.Factors enhancing protein thermostability[J].Protein Engineering Design and Selection,2000,13(3):179-191.DOI:10.1093/protein/13.3.179.
    [25]XUE Huping,ZHOU Jungang,YOU Chun,et al.Amino acid substitutions in the N-terminus,cord andα-helix domains improved the thermostability of a family 11 xylanase XynR8[J].Journal of Industrial Microbiology and Biotechnology,2012,39(9):1279-1288.DOI:10.1007/s10295-012-1140-y.
    [26]SRIPRANG R,ASANO K,GOBSUK J,et al.Improvement of thermostability of fungal xylanase by using site-directed mutagenesis[J].Journal of Biotechnology,2006,126(4):454-462.DOI:10.1016/j.jbiotec.2006.04.031.
    [27]MATTHEWS B W,NICHOLSON H,BECKTEL W J.Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding[J].Proceedings of the National Academy of Sciences,1987,84(19):6663-6667.DOI:10.1073/pnas.84.19.6663.
    [28]HARDY F,VRIEND G,VELTMAN O R,et al.Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines[J].FEBS Letters,1993,317(1/2):89-92.DOI:10.1016/0014-5793(93)81497-N.
    [29]YANG Wenhan,YANG Yongzhi,ZHANG Lingdi,et al.Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution[J].Scientific Reports,2017,7(1):1-9.DOI:10.1038/s41598-017-01758-5.
    [30]GEORIS J,DE LEMOS ESTEVES F,LAMOTTE-BRASSEUR J,et al.An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase:structural basis and molecular study[J].Protein Science,2000,9(3):466-475.DOI:10.1110/ps.9.3.466.
    [31]HAKULINEN N,TURUNEN O,J?NIS J,et al.Three-dimensional structures of thermophilicβ-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa[J].European Journal of Biochemistry,2003,270(7):1399-1412.DOI:10.1046/j.1432-1033.2003.03496.x.
    [32]MATSUMURA M,SIGNOR G,MATTHEWS B W.Substantial increase of protein stability by multiple disulphide bonds[J].Nature,1989,342:291-293.DOI:10.1038/342291a0.
    [33]XIONG H,FENEL F,LEISOLA M,et al.Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide bridges[J].Extremophiles,2004,8(5):393-400.DOI:10.1007/s00792-004-0400-9.
    [34]KIM T,JOO J C,YOO Y J.Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase[J].Journal of Biotechnology,2012,161(1):49-59.DOI:10.1016/j.jbiotec.2012.04.015.
    [35]YOU Chun,HUANG Qiang,XUE Huping,et al.Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum[J].Biotechnology and Bioengineering,2010,105(5):861-870.DOI:10.1002/bit.22623.
    [36]KRISHNA M M G,ENGLANDER S W.The N-terminal to C-terminal motif in protein folding and function[J].Proceedings of the National Academy of Sciences of Sciences,2005,102(4):1053-1058.DOI:10.1073/pnas.0409114102.
    [37]LEE Y E,LOWE S E,HENRISSAT B,et al.Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI[J].Bacteriol,1993,175(18):5890-5898.DOI:10.1128/jb.175.18.5890-5898.1993.
    [38]VERMA D,SATYANARAYANA T.Molecular approaches for ameliorating microbial xylanases[J].Bioresource Technology,2012,117:360-367.DOI:10.1016/j.biortech.2012.04.034.
    [39]ZHANG Huimin,LI Jianfang,WANG Junqing,et al.Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods[J].Biotechnology for Biofuels,2014,7(1):1-10.DOI:10.1186/1754-6834-7-3.
    [40]ZHANG Shan,ZHANG Kai,CHEN Xiuzhen,et al.Five mutations in N-terminus confer thermostability on mesophilic xylanase[J].Biochemical and Biophysical Research Communications,2010,395(2):200-206.DOI:10.1016/j.bbrc.2010.03.159.
    [41]FENEL F,LEISOLA M,J?NIS J,et al.A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II[J].Journal of Biotechnology,2004,108(2):137-143.DOI:10.1016/j.jbiotec.2003.11.002.
    [42]DUMON C,VARVAK A,WALL M A,et al.Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure[J].Journal of Biological Chemistry,2008,283(33):22557-22564.DOI:10.1074/jbc.M800936200.
    [43]YIN Xin,LI Jianfang,WANG Junqing,et al.Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation[J].Journal of the Science of Food and Agriculture,2013,93(12):3016-3023.DOI:10.1002/jsfa.6134.
    [44]SUN Jianyi,LIU Mingqi,XU Yinglei,et al.Improvement of the thermostability and catalytic activity of a mesophilic family 11xylanase by N-terminus replacement[J].Protein Expression and Purification,2005,42(1):122-130.DOI:10.1016/j.pep.2005.03.009.
    [45]杨浩萌,孟昆,罗会颖,等.通过N端替换提高木聚糖酶的热稳定性[J].生物工程学报,2006,22(1):26-32.DOI:10.13345/j.cjb.2006.01.004.
    [46]SONG Letian,DUMON C,SIGUIER B,et al.Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus[J].Journal of Biotechnology,2014,174:64-72.DOI:10.1016/j.jbiotec.2014.01.004.
    [47]ZHANG S,HE Y Z,YU H Y,et al.Seven N-terminal residues of a thermophilic xylanase are sufficient to confer hyperthermostability on its mesophilic counterpart[J].PLoS ONE,2014,9(1):e87632.DOI:10.1371/journal.pone.0087632.
    [48]杨浩萌,王亚茹,伍宁丰,等.N 1 3 D、S 4 0 E点突变提高木聚糖酶XYNB的热稳定性[J].微生物学通报,2007(3):533-536.DOI:10.13344/j.microbiol.china.2007.03.034.
    [49]柏文琴,杨鲁红,马延和.通过N端引入芳香族氨基酸提高木聚糖酶的热稳定性[J].生物工程学报,2014,30(8):1217-1224.DOI:10.13345/j.cjb.140194.
    [50]WATANABE M,FUKADA H,ISHIKAWA K.Construction of thermophilic xylanase and its structural analysis[J].Biochemistry,2016,55(31):4399-4409.DOI:10.1021/acs.biochem.6b00414.
    [51]LIU L,ZHANG G,ZHANG Z,et al.Terminal amino acids disturb xylanase thermostability and activity[J].Journal of Biological Chemistry,2011,286(52):44710-44715.DOI:10.1074/jbc.M111.269753.
    [52]LI Q,SUN B G,XIONG K,et al.Improving special hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by engineering of N-terminal extension and site-directed mutagenesis in C-terminal[J].International Journal of Biological Macromolecules,2017,96:451-458.DOI:10.1016/j.ijbiomac.2016.12.050.
    [53]闵柔,李剑芳,高树娟,等.木聚糖酶Ev Xyn11TS耐热性与其N端二硫键的相关性分析[J].微生物学报,2013,53(4):346-353.DOI:10.13343/j.cnki.wsxb.2013.04.007.
    [54]高树娟,汪俊卿,邬敏辰,等.N端二硫键对1 1家族木聚糖酶热稳定性的影响[J].生物工程学报,2012,28(12):1441-1449.DOI:10.13345/j.cjb.2012.12.009.
    [55]YIN X,YAO Y,WU M C,et al.A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability[J].Biochemistry(Moscow),2014,79(6):531-537.DOI:10.1134/S0006297914060066.
    [56]WANG Y W,FU Z,HUANG H,et al.Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge[J].Bioresource Technology,2012,112:275-279.DOI:10.1016/j.biortech.2012.02.092.
    [57]WAKARCHUK W W,SUNG W L,CAMPBELL R L,et al.Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds[J].Protein Engineering,Design and Selection,1994,7(11):1379-1386.DOI:10.1093/protein/7.11.1379.
    [58]YANG H M,YAO B,MENG K,et al.Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant[J].Journal of Industrial Microbiology&Biotechnology,2007,34(3):213-218.DOI:10.1007/s10295-006-0188-y.
    [59]JEONG M Y,KIM S,YUN C W,et al.Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No.236[J].Journal of Biotechnology,2007,127(2):300-309.DOI:10.1016/j.jbiotec.2006.07.005.
    [60]李琦,陈明真,赵林果.耐热木聚糖酶基因的克隆表达及其在酶解玉米芯木聚糖中的应用[J].林业工程学报,2017,2(4):63-69.DOI:10.13360/j.issn.2096-1359.2017.04.011.
    [61]赵丽君,刘文,牛梅红,等.木聚糖酶在制浆造纸上的应用及研究进展[J].天津造纸,2015,37(4):15-18.
    [62]张亮,杨在宾,杨维仁,等.制粒温度和粉碎粒度对颗粒饲料品质的影响[J].饲料工业,2013,34(23):25-29.
    [63]BUTT M S,TAHIR-NADEEM M,AHMAD Z,et al.Xylanases and their applications in baking industry[J].Food Technology and Biotechnology,2008,46(1):22-31.
    [64]VERJANS P,DORNEZ E,DELCOUR J A,et al.Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11Aureobasidium pullulans xylanase[J].Food Chemistry,2010,123(2):331-337.DOI:10.1016/j.foodchem.2010.04.039.
    [65]OLFA E,MONDHER M,ISSAM S,et al.Induction,properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus[J].Journal of Food Biochemistry,2007,31(1):96-107.DOI:10.1111/j.1745-4514.2007.00101.x.
    [66]POLIZELI M,RIZZATTI A C S,MONTI R,et al.Xylanases from fungi:properties and industrial applications[J].Applied Microbiology and Biotechnology,2005,67(5):577-591.DOI:10.1007/s00253-005-1904-7.
    [67]BANASZKIEWICZ T.Effect of xylanase application to rapeseed cake diet on digestibility and deposition of nutrients and energy in young broiler chickens[J].World Journal of Veterinary Science,2013,1:18-24.DOI:10.12970/2310-0796.2013.01.01.4.
    [68]HERNáNDEZ A,KHOLIF A E,ELGHANDOUR M M M Y,et al.Effectiveness of xylanase and Saccharomyces cerevisiae as feed additives on gas emissions from agricultural calf farms[J].Journal of Cleaner Production,2017,148:616-623.DOI:10.1016/j.jclepro.2017.01.070.
    [69]侯洁,李琴,熊科,等.微紫青霉酸性木聚糖酶xynA基因的克隆与序列分析[J].食品科学,2017,38(14):9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700