长链型超支化聚合物对PLA/PPC共混体系的增容改性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Compatibilizing Modification of PLA/PPC Blends with Long-Chain Hyperbranched Polymer
  • 作者:康凯尔 ; 靳玉娟 ; 汪博 ; 翁云宣
  • 英文作者:KANG Kaier;JIN Yujuan;WANG Bo;WENG Yunxuan;School of Materials Science and Mechanical Engineering, Beijing Technology and Business University;
  • 关键词:超支化聚合物 ; 聚乳酸 ; 聚碳酸亚丙酯 ; 增容
  • 英文关键词:hyperbranched polymer;;polylactic acid;;polypropylene carbonate;;compatibilization
  • 中文刊名:ZGSU
  • 英文刊名:China Plastics
  • 机构:北京工商大学材料与机械工程学院;
  • 出版日期:2019-02-26
  • 出版单位:中国塑料
  • 年:2019
  • 期:v.33;No.299
  • 基金:国家自然科学基金青年项目(51503007);; “十三五”时期北京市属高校高水平教师队伍建设支持计划(CIT&TCD201804030);; 2018年北京工商大学研究生科研能力提升计划项目
  • 语种:中文;
  • 页:ZGSU201902001
  • 页数:7
  • CN:02
  • ISSN:11-1846/TQ
  • 分类号:5-11
摘要
将"一步法"合成的超支化聚酯进行接枝改性,得到末端带有大量脂肪酸长链的超支化聚合物(长链型超支化聚合物,LCHBP),并采用红外光谱、核磁共振、羟值滴定等方法对其进行表征。以LCHBP为改性剂,对聚乳酸(PLA)/聚碳酸亚丙酯(PPC)进行不同程度的改性,制备了PLA/PPC/LCHBP熔融共混物,采用差示扫描量热仪、电子万能试验机、扫描电镜等,对其热性能、力学性能、断面形貌等进行表征。结果表明,加入不同含量的LCHBP后,共混体系的ΔT_g出现不同程度降低,表明LCHBP的加入改善了PLA与PPC的相容性;与PLA/PPC体系相比,LCHBP的加入可使共混体系在保持拉伸强度基本不变的情况下,大幅提升断裂伸长率和冲击强度,其中当LCHBP的加入量为2.0%时,冲击强度提高61%,断裂伸长率提高367%。
        A grafting modification was performed for the hyperbranched polyester synthesized by a "one-step" method to obtain a sort of hyperbranched polymer with a large number of long-chain stearic acid at the end(LCHBP), and the chemical structure of LCHBP was characterized by Fourier-transform infrared spectroscopy, nuclear magnetic spectroscopy and hydroxyl value titration. The polylactic acid(PLA)/polypropylene carbonate(PPC) blends were modified with LCHBP through melt blending, and then their thermal performance, mechanical properties and morphologies of fracture surface were investigated by using differential scanning calorimeter, electronic universal testing machine and scanning electron microscope. The results indicated that the ΔT_g of PLA/PPC/LCHBP blends decreased significantly with the addition of LCHBP, indicating an improvement in compatibility of PLA and PPC. Compared to PLA/PPC binary blends, the PLA/PPC/LCHBP ternary blends showed a remarkable increase in elongation at break and impact strength, whereas their tensile strength remained unchanged. The tensile strength of ternary blends increased by 61 % and their elongation at break increased by 367 % with the addition of 2.0 wt% LCHBP.
引文
[1] BLEDZKI A K, Jaszkiewicz A. Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres—A Comparative Study to PP[J]. Composites Science & Technology, 2010, 70(12):1 687-1 696.
    [2] XING Z C, CHAE W P, BAEK J Y, et al. In Vitro Assessment of Antibacterial Activity and Cytocompatibility of Silver-Containing PHBV Nanofibrous Scaffolds for Tissue Engineering[J]. Biomacromolecules, 2010, 11(5):1 248-1 253.
    [3] WENG Y X, WANG L, ZHANG M, et al. Biodegradation Behavior of P(3HB,4HB)/PLA Blends in Real Soil Environments, Polymer Testing[J]. 2013,32 (1): 60-70.
    [4] WENG Y X, JIN Y J, MENG Q Y, et al. Biodegradation Behavior of Poly(butylene adipate-co-terephthalate) (PBAT), Poly(lactic acid) (PLA), and Their Blend under Soil Conditions[J]. Polymer Testing, 2013, 32(5):918-926.
    [5] BYUN Y, WHITESIDE S, THOMAS R, et al. The Effect of Solvent Mixture on the Properties of Solvent Cast Polylactic Acid (PLA) Film[J]. Journal of Applied Polymer Science, 2012, 124(5):3 577-3 582.
    [6] TALBAMRUNG T, KASEMSOOK C, SANGTEAN W, et al. Effect of Peroxide and Organoclay on Thermal and Mechanical Properties of PLA in PLA/NBR Melted Blend[J]. Energy Procedia, 2016, 89:274-281.
    [7] LI X, QI C, HAN L, et al. Influence of Dynamic Compressive Loading on the in Vitro Degradation Behavior of Pure PLA and Mg/PLA Composite.[J]. Acta Biomaterialia, 2017,64:269-278.
    [8] SUWANMANEE U, VARABUNTOONVIT V, CHAIWUTTHINAN P, et al. Life Cycle Assessment of Single Use Thermoform Boxes Made from Polystyrene (PS), Polylactic Acid, (PLA), and PLA/starch: Cradle to Consumer Gate.[J]. International Journal of Life Cycle Assessment, 2013, 18(2):401-417.
    [9] ZHAO H, CUI Z, WANG X, et al. Processing and Characterization of Solid and Microcellular Poly(lactic acid)/Polyhydroxybutyrate-valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites[J]. Composites Part B Engineering, 2013, 51(51):79-91.
    [10] JIAN T, CUN J S, MING F C,et al. Thermal Properties and Degradability of Poly(propylene carbonate)/Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) Blends[J]. Polymer Degradation & Stability, 2009, 94(4):575-583.
    [11] ZHANG Z, MO Z, ZHANG H, et al. Crystallization and Melting Behaviors of PPC-BS/PVA Blends[J]. Macromolecular Chemistry & Physics, 2003, 204(12):1 557-1 566.
    [12] ZHAO Y, CHEN G, XIAO M, et al. Biodegradable PPC/(PVA-TPU) Ternary Blend Blown Films with Enhanced Mechanical Properties[J]. Journal of Polymer Research, 2016, 23(4):80.
    [13] LORENZO M L D, OVYN R, MALINCONICO M, et al. Peculiar Crystallization Kinetics of Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Blends[J]. Polymer Engineering & Science, 2016, 55(12):2 698-2 705.
    [14] SUN Q, MEKONNEN T, MISRA M, et al. Novel Biodegradable Cast Film from Carbon Dioxide Based Copolymer and Poly(Lactic Acid)[J]. Journal of Polymers & the Environment, 2016, 24(1):23-36.
    [15] WANG Z, ZHANG M, LIU Z, et al. Compatibilization of the Poly(lactic acid)/Poly(propylene carbonate) Blends through in Situ Formation of Poly(lactic acid)-b-Poly(propylene carbonate) Copolymer[J]. Journal of Applied Polymer Science, 2018, 135(11):46 009.
    [16] DENG Y, SAUCIERSAWYER J, HOIMES C, et al. The Effect of Hyperbranched Polyglycerol Coatings on Drug Delivery Using Degradable Polymer Nanoparticles[J]. Biomaterials, 2014, 35(24):6 595-6 602.
    [17] TANG B, LIU X B, ZHAO X L, et al. Highly Efficient in Situ Toughening of Epoxy Thermosets with Reactive Hyperbranched Polyurethane[J]. Journal of Applied Poly-mer Science, 2014, 131(16):1 107-1 117.
    [18] FOTIADOU S, KARAGEORGAKI C, CHRISSOPOULOU K, et al. Structure and Dynamics of Hyperbranched Polymer/Layered Silicate Nanocomposites[J]. Macromolecules, 2013, 46(7):2 842-2 855.
    [19] ZHOU X, ZHENG Q, WANG C, et al. Star-Shaped Amphiphilic Hyperbranched Polyglycerol Conjugated with Dendritic Poly(l-lysine) for the Codelivery of Docetaxel and MMP-9 siRNA in Cancer Therapy[J]. Acs Applied Materials & Interfaces, 2016, 8(20):12 609.
    [20] SCHUSSELE A C, NUBLING F, YI T, et al. Self-Healing Rubbers Based on NBR Blends with Hyperbranched Polyethylenimines[J]. Macromolecular Materials & Engineering, 2012, 297(5):411-419.
    [21] LI J L, YAN M, TENG Q, et al. An Epoxy-ended Hyperbranched Polymer as a New Modifier for Toughening and Reinforcing in Epoxy Resin, Journal of Applied Poly-mer Science[J], 2013, 130 (2) : 1 064-1 073.
    [22] LIU C, YAN H, YUAN L, et al. Hyperbranched Polytriazine Grafted Reduced Graphene Oxide and Its Application[J]. Journal of Polymer Science Part A Polymer Chemistry, 2015, 53(18):2 132-2 140.
    [23] DARAEI P, MADAENI S S, GHAEMI N, et al. Enhancing Antifouling Capability of PES Membrane Via Mixing with Various Types of Polymer Modified Multi-walled Carbon Nanotube[J]. Journal of Membrane Science, 2013, 444(10):184-191.
    [24] HUBER T, POTSCHKE P, POMPE G, et al. Blends of Hyperbranched Poly(ether amide)s and Polyamide-6, Macromolecular Materials and Engineering[J]. 2000(280/281): 33-40.
    [25] LI S, WU Q, LV T, et al. Synthesis and Characterization of Hyperbranched Polymer with Epoxide-terminated Group and Application as Modifier for Epoxy/polyamide System[J]. Polymer Science, 2017, 59(3):1-9.
    [26] 梁柱, 葛震, 姚维尚, 等. 硬脂酸改性超支化聚酯无氟水性聚氨酯拒水剂的制备及性能[J]. 复合材料学报, 2016, 33(7):1 429-1 436. LIANG Z, GE Z, YAO W S, et al. Preparation and Properties of Stearic Acid Modified Hyperbranched Polyester Fluorine-free Waterborne Polyurethane Water Repellent[J].Journal of Composite Materials,2016,33(7):1 429-1 436.
    [27] 孙戈亮, 万平玉, 赵磊, 等. 木质素样品的羟值测定方法[J]. 林产化学与工业, 2012, 32(3):51-55. SUN G L, WAN P Y, ZHAO L, et al. Determination of Hydroxyl Value of Lignin Samples[J]. Chemical Industry and Industry, 2012, 32(3): 51-55.
    [28] 胡玉娟, 黄雪红. 浅谈酰化法测定聚醚多元醇羟值[J]. 聚氨酯工业, 2005, 20(6):28-32. HU Y J, HUANG X H. Discussion on Determination of Hydroxyl Value of Polyether Polyol by Acylation Method[J]. Polyurethane Industry, 2005, 20(6): 28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700