稻田土壤古菌群落组成对秸秆还田的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of archaeal community composition in paddy soils to straw return
  • 作者:王宁 ; 赵亚慧 ; 艾玉春 ; 张永春 ; 汪吉东 ; 于建光
  • 英文作者:WANG Ning;ZHAO Ya-hui;AI Yu-chun;ZHANG Yong-chun;WANG Ji-dong;YU Jian-guang;Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences;Scientific Observing and Experimental Station for Farmland Conservation(Jiangsu), Ministry of Agriculture;
  • 关键词:古菌群落 ; 秸秆还田 ; 演替规律 ; 驱动因子
  • 英文关键词:archaeal community;;straw return;;community response;;influencing factors
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:江苏省农业科学院农业资源与环境研究所;农业部江苏耕地保育科学观测实验站;
  • 出版日期:2019-02-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.282
  • 基金:公益性行业(农业)科研专项(201503136);; 国家自然科学基金项目(41271308,41601261)~~
  • 语种:中文;
  • 页:NHBH201902017
  • 页数:9
  • CN:02
  • ISSN:12-1347/S
  • 分类号:132-140
摘要
为探讨秸秆还田下稻田土壤古菌群落的演替规律及其驱动因子,本研究开展室内稻田土壤淹水培养试验,利用高通量测序技术,研究了淹水培养第0、15、30 d和60 d时不同量小麦秸秆(0、1%、2%和5%)施用下两种类型的稻田土壤(高砂土和黄泥土)古菌群落组成的动态变化及其影响因子。结果表明:秸秆还田导致土壤pH显著降低,而土壤电导率(EC)、总碳(TC)、总氮(TN)、碳氮比(C/N)以及土壤孔隙水中溶解性有机碳(DOC)、还原性亚铁[Fe(Ⅱ)]和总铁(Fe)含量显著增加,并且当秸秆还田量为5%时,上述土壤指标改变量最大。基于高通量测序技术发现,两种类型稻田土壤的优势古菌均为奇古菌门(Thanumarchaeota)。在淹水培养的0~30 d,秸秆还田对奇古菌门的相对丰度没有显著影响,维持在97%~98%;然而,在培养的第60 d,与未施用秸秆相比,秸秆施用下两种类型稻田土壤中奇古菌门的相对丰度显著降低(P<0.05),并且随着秸秆施用量的增加,奇古菌门丰度的降低程度越大。主成分分析(PCA)结果显示两种不同类型土壤的古菌群落存在着显著差异(P<0.05),表明土壤类型是土壤古菌群落结构的重要影响因子。与未施用秸秆的土壤相比,5%秸秆施用显著改变了高砂土古菌群落结构,而1%秸秆施用显著改变了黄泥土壤古菌群落结构。进一步对不同量秸秆施用下土壤古菌群落结构的分析发现,秸秆施用量为5%时高砂土壤古菌群落显著不同于秸秆施用量为1%和2%的土壤,而1%和2%秸秆施用量之间并无显著差异;而对黄泥土,仅秸秆施用量为1%和2%时古菌群落存在着显著差异。为了进一步探究土壤古菌群落迁移的驱动因子,冗余分析(RDA)发现,pH和C/N比是秸秆还田下两种类型土壤古菌群落迁移的重要影响因子。综合分析认为,秸秆还田主要通过改变土壤性质来调控古菌群落结构,而不同类型土壤的古菌群落结构对秸秆还田的响应亦不同。
        To explore the impacts of straw return on the composition of archaeal communities in paddy soils, different amounts of wheat straw(0, 1%, 2%, and 5%)were incorporated into two types of paddy soils(silty and clayed soil), which were incubated with flooding in the labover a 60 d period. At time intervals of 0, 15, 30, and 60 d, soil samples were collected and analyzed for soil physico-chemical propertiesand archaeal communities based on high-throughput sequencing. Results showed that straw addition significantly decreased soil pH whileincreasing soil electricity conductivity(EC), total carbon and nitrogen(TC and TN)contents, and C/N ratio and concentrations of dissolve or?ganic carbon(DOC), ferrous[Fe(Ⅱ)], and total ferric(Fe)in soil porewater(P<0.05). Higher application rates of straw lead to greaterchanges in the soil properties. Based on illumina sequencing technology, the major component of the archaeal community was Thaumarchaeo?ta at the phylum level for both soils with and without wheat straw. During the incubation period of 0~30 d, straw return had insignificant in?fluences on the relative abundance of Thaumarchaeota for both soils, which was maintained at 97%~98%. However, at the time interval of 60 d, straw addition at rates of 1%, 2%, and 5% significantly reduced the relative abundances of Thaumarchaeota in both soils. Principle com?ponent analysis(PCA)based on archaeal abundance at the species level showed that there were significant(P<0.05)differences in archaealcommunity composition between the two soil types, indicating soil-dependent archaeal community composition. Compared to that in un?amended soils, significant shifts in archaeal community composition were observed in the silty soil when amended with 5% straw, and in theclayed soil when amended with 1% straw. Further analyses showed significant(P<0.05)differences in archaeal community compositions ofthe silty soil between low(1% and 2%)and high(5%)rates of straw incorporation, whereas there were insignificant differences between 1%and 2% straw treatments. Unlike the silty soil, significant differences in archaeal community compositions were observed for the clayed soilswhen amended with 1% and 2% of straw. Using an envfit function(999 permutations), soil pH, EC, C/N ratio, DOC, Fe(Ⅱ), and Fe that sig?nificantly correlated with the archaeal community composition at the species level were selected in an RDA analysis, revealing that pH andC/N ratio were the dominant variables that significantly contributed to the variance of archaeal communities in both soils. In conclusion,straw addition significantly changed archaeal community composition by altering soil chemical characteristics, and the response of soil archaeal community composition to straw return depended on soil type.
引文
[1]Wang W,Lai D Y F,Wang C,et al.Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J].Soil&Tillage Research,2015,152:8-16.
    [2]Becker M,Asch F,Maskey S L,et al.Effects of transition season management on soil N dynamics and system N balances in rice-wheat rotations of Nepal[J].Field Crops Research,2007,103(2):98-108.
    [3]Khalil M I,Inubushi K.Possibilities to reduce rice straw-induced global warming potential of a sandy paddy soil by combining hydrological manipulations and urea-N fertilizations[J].Soil Biology and Biochemistry,2007,39(10):2675-2681.
    [4]Zou J W,Huang Y,Jiang J Y,et al.A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime,crop residue,and fertilizer application[J].Global Biogeochemical Cycles,2005,19(2):153-174.
    [5]郭瑞华,靳红梅,常志州,等.秸秆还田模式对土壤有机碳及腐植酸含量的影响[J].农业环境科学学报,2017,36(4):727-733.GUO Rui-hua,JIN Hong-mei,CHANG Zhi-zhou,et al.Effects of returning patterns of straw to field on soil organic carbon and soil humus composition in rice-wheat double cropping systems[J].Journal of AgroEnvironment Science,2017,36(4):727-733.
    [6]Chen L,Zhang J,Zhao B,et al.Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil[J].Journal of Soils&Sediments,2014,14(11):1829-1840.
    [7]赵勇,李武,周志华,等.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报,2005,24(6):1114-1118.ZHAO Yong,LI Wu,ZHOU Zhi-hua,et al.Change of microbial community in straw amended soil[J].Journal of Agro-Environment Science,2005,24(6):1114-1118.
    [8]于少兰,乔延路,韩彦琼,等.好氧氨氧化微生物系统发育及生理生态学差异[J].微生物学通报,2015,42(12):2457-2465.YU Shao-lan,QIAO Yan-lu,HAN Yan-qiong,et al.Differences between ammonia-oxidizing microorganisms in phylogeny and physiological ecology[J].Microbiology China,2015,42(12):2457-2465.
    [9]Ouyang Y,Norton J M,Stark J M,et al.Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J].Soil Biology&Biochemistry,2016,96:4-15.
    [10]Thauer R,Kaster A,Seedorf H W,et al.Methanogenic archaea:Ecologically relevant differences in energy conservation[J].Nature Reviews Microbiology,2008,6(8):579-591.
    [11]Chen L,Zhang J,Zhao B,et al.Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil[J].Journal of Soils&Sediments,2014,14(11):1829-1840.
    [12]Henriksen T M,Breland T A.Carbon mineralization,fungal and bacterial growth,and enzyme activities as affected by contact between crop residues and soil[J].Biology&Fertility of Soils,2002,35(1):41-48.
    [13]Zhao F,Xu K.Efficiency of DNA extraction methods on the evaluation of soil microeukaryotic diversity[J].Acta Ecologica Sinica,2012,32(4):209-214.
    [14]Wang N,Yu J G,Zhao Y H,et al.Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils:Changes in microbial community compositions[J].Atmospheric Environment,2018,174:171-179.
    [15]Song M,Luo C,Jiang L,et al.Identification of benzo[a]pyrene-metabolizing bacteria in forest soils by using DNA-based stable-isotope probing[J].Applied&Environmental Microbiology,2015,81(21):7368-7376.
    [16]Lv B Y,Xing M Y,Yang J Y,et al.Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung[J].Applied Microbiology&Biotechnology,2015,99(24):10703-10712.
    [17]王宁,于建光,常志州,等.稻田土壤真菌群落多样性和组成对麦秸还田的响应[J].土壤,2017,6:1115-1120.WANG Ning,YU Jian-guang,CHANG Zhi-zhou,et al.Responses of fungal community diversity and composition in paddy soils to straw return[J].Soil,2017,6:1115-1120.
    [18]王峰,萨仁高娃,马学恩.深海沉积物古菌的研究进展[C].全国兽医病理学、动物病理生理学学术会议论文集,2009.WANG Feng.SA Rengaowa,MA Xue-en.Advances in research of marine archaea[C].National Academic Conference on Veterinary Pathology and Animal Pathophysiology,2009.
    [19]Spang A,Poehlein A,Offre P,et al.The genome of the ammonia-oxidizing candidatus nitrososphaera gargensis:Insights into metabolic versatility and environmental adaptations[J].Environmental Microbiology,2012,14(12):3122-3145.
    [20]Pearson A,McNichol A P,Benitez-Nelson B C,et al.Origins of lipid biomarkers in Santa Monica Basin surface sediment:A case study using compound-specific Delta C-14 analysis[J].Geochimica Et Cosmochimica Acta,2001,65(18):3123-3137.
    [21]Wuchter C,Schouten S,Boschker H T S,et al.Bicarbonate uptake by marine Crenarchaeota[J].EMS Microbiology Letters,2003,219(2):203-207.
    [22]Konneke M,Bernhard A E,de la Torre J R,et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon[J].Nature,2005,437(7058):543-546.
    [23]Preston C M,Wu K Y,Molinski T F,et al.A psychrophilic crenarchaeon inhabits a marine sponge:Cenarchaeum symbiosum gen nov,sp,nov[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(13):6241-6246.
    [24]Hatzenpichler R,Lebecleva E V,Spieck E,et al.A moderately hermophilic ammonia-oxidizing crenarchaeote from a hot spring[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(6):2134-2139.
    [25]De la Torre J R,Walker C B,Ingalls A E,et al.Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol[J].Environmental Microbiology,2008,10(3):810-818.
    [26]Tourna M,Stieglmeier M,Spang A,et al.Nitrososphaera viennensis,an ammonia oxidizing archaeon from soil[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(20):8420-8425.
    [27]Wang N,Ding L J,Xu H J,et al.Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils[J].FEMS Microbiology Ecology,2015,91(3):1-9.
    [28]Shen C,Xiong J,Zhang H,et al.Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J].Soil Biology and Biochemistry,2013,57:204-211.
    [29]闫洪亮,王胜楠,邹洪涛,等.秸秆深还田两年对东北半干旱区土壤有机质、pH值及微团聚体的影响[J].水土保持研究,2013,20(4):44-48.YAN Hong-liang,WANG Sheng-nan,ZOU Hong-tao,et al.Effects of two years of stalk deeply return to the field on soil microaggregates and soil organic matter and pH value after in semiarid region of the northeastern China[J].Research of Soil and Water Conservation,2013,20(4):44-48.
    [30]Wang W,Lai D Y F,Wang C,et al.Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J].Soil&Tillage Research,2015,152:8-16.
    [31]Li F,Wang Z,Dai J,et al.Fate of nitrogen from green manure,straw,and fertilizer applied to wheat under different summer fallow management strategies in dryland[J].Biology&Fertility of Soils,2015,51(7):1-12.
    [32]张丽,张磊,鲁剑巍,等.添加尿素和秸秆对三熟制水旱轮作土壤各形态氮素的影响[J].土壤,2017,49(1):13-18.ZHANG Li,ZHANG Lei,LU Jian-wei,et al.Effects of urea and straw on soil different nitrogen forms under paddy-upland rotation of triple cropping system[J].Soil,2017,49(1):13-18.
    [33]Hu H W,Xu Z H,He J Z.Ammonia-oxidizing archaea play a predominant role in acid soil nitrification:Advances in agronomy[J].Elsevier Science&Technology,2014,125:261-302.
    [34]蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田CH4和N2O排放的影响[J].中国环境科学,2003,23(5):552-556.JIANG Jing-yan,HUANG Yao,ZONG Liang-gang.Influence of water controlling and straw application on CH4 and N2O emissions from rice field[J].China Environmental Science,2003,23(5):552-556.
    [35]Shindo H,Nishio T.Immobilization and remineralization of N following addition of wheat straw into soil:Determination of gross N transformation rates by15N-ammonium isotope dilution technique[J].Soil Biology and Biochemistry,2005,37(3):425-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700