三峡库区蓄水期和非蓄水期附石藻类群落变化及其影响因子分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of Epilithic Algae Communities and Their Relationship with Environmental Factors During Storage and Non-storage Periods in the Three Gorges Reservoir
  • 作者:付君珂 ; 刘黎 ; 贺新宇 ; 张红波 ; 董聪聪 ; 杨燕君 ; 施军琼 ; 吴忠兴
  • 英文作者:FU Jun-ke;LIU Li;HE Xin-yu;ZHANG Hong-bo;DONG Cong-cong;YANG Yan-jun;SHI Jun-qiong;WU Zhong-xing;Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region,Ministry of Education,Southwest University;
  • 关键词:三峡库区 ; 附石藻类 ; 水文情势 ; 群落组成 ; 影响因子
  • 英文关键词:Three Gorges Reservoir;;epilithic algae;;hydrological regime;;community composition;;environmental factors
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西南大学三峡库区生态环境教育部重点实验室重庆市三峡库区植物生态与资源重点实验室;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41877410);; 中央高校基本科研业务费专项(XDJK2017B010)
  • 语种:中文;
  • 页:HJKZ201907016
  • 页数:9
  • CN:07
  • ISSN:11-1895/X
  • 分类号:141-149
摘要
以三峡库区重庆段奉节地区草堂河、梅溪河和大溪河三条支流为研究区域,对蓄水期和非蓄水期库区支流的非回水区和回水区(常年回水区和变动回水区)附石藻类组成及其相关环境因素进行分析.结果表明,3条支流共发现附石藻类103种,隶属4门45属,非回水区67种,隶属3门34属,回水区82种(常年回水区64种,变动回水区41种),隶属4门34属.蓄水期,非回水区优势种为变异直链藻、扁圆卵形藻、普通等片藻、锉刀布纹藻和巨颤藻,回水区优势种为变异直链藻、近缘桥弯藻、普通等片藻、高山立方藻和颗粒直链藻;非蓄水期,非回水区优势种为变异直链藻、近缘桥弯藻和扁圆卵形藻,回水区优势种为巨颤藻、岩栖颤藻、美丽颤藻、尖针杆藻、丝藻、优美平裂藻和小颤藻,表明非蓄水期不同河段优势藻种差异显著,而蓄水期不同河段优势藻种差异较小;非回水区不同时期优势藻种无明显差异,在非蓄水期常年回水区和变动回水区优势种属差异相对较小,而蓄水期差异较大.冗余(RDA)分析表明,附石藻类组成变化是温度、电导率(SPC)、p H、总氮(TN)和总磷浓度(TP)等环境因子共同作用的结果,各样点优势藻种细胞密度变化主要受氮、磷元素浓度变化的影响.这些结果表明库区不同水文情势不仅影响支流水体环境,而且对底栖藻类组成变化起着重要的作用.
        In order to explore the composition of epiphytic algae and its related environmental factors,12 sampling sites in the natural reaches and the backwater reaches( including perennial backwater sections and fluctuating backwater sections) were investigated among tributaries of the Caotang River,the Meixi River,and the Daxi River in the Fengjie district of the Chongqing section of the Three Gorges Reservoir under different hydrological regimes( i. e.,storage and non-storage periods). Results showed that 103 species of epilithic algae belonging to 45 genera and 4 families are found in the 3 tributaries. This included 67 species belonging to 34 genus in the natural sections and 82 species( 64 species in perennial backwater sections and 41 species in fluctuating backwater sections)belonging to 34 genera in the backwater sections. During the storage period,the dominant species in the natural sections were Melosira varians,Cocconeis placentula,Diatoma vulgure,Gyrosigma scalproides,and Oscillatoria tenuis,while the dominant species in the backwater sections were M. varians,Cymbella affinis,D. vulgure,Eucapsis alpina,and M. granulata. During the non-storage period,the dominant species in the natural sections were M. varians,C. affinis,and C. placentula,whereas the dominant species in the backwater sections were O. princeps,O. rupicola,O. formosa,Synedra acus,Ulothrix sp.,Merismopedia elegans,and O. tenuis.These results suggested that the compositions of dominant species showed significant differences during the non-storage period,while little difference was found during the storage period. In addition,the dominant species did not show a significant change in the natural sections,but a marked difference was observed in the backwater sections. Similar dominant species were observed in both perennial and fluctuating backwater sections during the non-storage period,but significantly different dominant species were found during the storage period. Redundancy analysis suggested that the composition of epilithic algae was influenced by different environmental factors,such as temperature,electrical conductivity,p H,total nitrogen,and total phosphorus. Indeed,changes in the cell densities of dominant algae at the different sites were mainly affected by temperature and the concentrations of nitrogen and phosphorus. These results suggest that the different hydrological regimes had an important role not only on the reservoir water environment,but also the dynamics of epilithic algal communities.
引文
[1] Stone R. Three gorges dam:into the unknown[J]. Science,2008,321(5889):628-632.
    [2] Sha Y K,Wei Y P,Li W P,et al. Artificial tide generation and its effects on the water environment in the backwater of Three Gorges Reservoir[J]. Journal of Hydrology,2015,528:230-237.
    [3]杨正健,刘德富,纪道斌,等.三峡水库172. 5 m蓄水过程对香溪河库湾水体富营养化的影响[J].中国科学:技术科学,2010,40(4):358-369.Yang Z J,Liu D F,Ji D B,et al. Influence of the impounding process of the Three Gorges Reservoir up to water level 172. 5 m on water eutrophication in the Xiangxi Bay[J]. Science China Technological Sciences,2010,53(4):1114-1125.
    [4]陈淼,苏晓磊,黄慧敏,等.三峡库区支流生境因子对库区蓄水的响应[J].生态学报,2018,38(4):1478-1486.Chen M,Su X L,Huang H M,et al. Response of habitat factors to reservoir impoundment in tributaries in the Three Gorges Reservoir Region[J]. Acta Ecologica Sinica,2018,38(4):1478-1486.
    [5]杨志,唐会元,朱迪,等.三峡水库175 m试验性蓄水期库区及其上游江段鱼类群落结构时空分布格局[J].生态学报,2015,35(15):5064-5075.Yang Z,Tang H Y,Zhu D,et al. Spatiotemporal patterns of fish community structures in the Three Gorges Reservoir and its upstream during the 175-m-deep impoundment[J]. Acta Ecologica Sinica,2015,35(15):5064-5075.
    [6]姜伟,周川,纪道斌,等.三峡库区澎溪河与磨刀溪电导率等水质特征与水华的关系比较[J].环境科学,2017,38(6):2326-2335.Jiang W,Zhou C,Ji D B,et al. Comparison of relationship between conduction and algal bloom in Pengxi River and Modao River in Three Gorges Reservoir[J]. Environmental Science,2017,38(6):2326-2335.
    [7]杨浩,曾波,孙晓燕,等.蓄水对三峡库区重庆段长江干流浮游植物群落结构的影响[J].水生生物学报,2012,36(4):715-723.Yang H,Zeng B,Sun X Y,et al. Effect of impoundment on community structure of the phytoplankton in the main stream of the Three Gorges Reservoir of Chongqing[J]. Acta Hydrobiologica Sinica,2012,36(4):715-723.
    [8]张晟,刘景红,黎莉莉,等.三峡水库成库初期营养盐与浮游植物分布特征[J].环境科学,2006,27(6):1056-1061.Zhang S,Liu J H,Li L L,et al. Distribution features of nutrient and phytoplankton in incipient Three Gorges Reservoir[J].Chinese Journal of Environmental Science,2006,27(6):1056-1061.
    [9] Cardinale B J,Palmer M A,Collins S L. Species diversity enhances ecosystem functioning through interspecific facilitation[J]. Nature,2002,415(6870):426-429.
    [10] Jia Y H,Dan J,Zhang M,et al. Growth characteristics of algae during early stages of phytoplankton bloom in Lake Taihu,China[J]. Journal of Environmental Sciences,2013,25(2):254-261.
    [11] Round F E. Diatoms in river water-monitoring studies[J].Journal of Applied Phycology,1991,3(2):129-145.
    [12] Van Dam H,Mertens A,Sinkeldam J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands[J]. Netherland Journal of Aquatic Ecology,1994,28(1):117-133.
    [13] Chessman B,Growns I,Currey J,et al. Predicting diatom communities at the genus level for the rapid biological assessment of rivers[J]. Freshwater Biology,1999,41(2):317-331.
    [14] Smucker N J,Becker M,Detenbeck N E,et al. Using algal metrics and biomass to evaluate multiple ways of defining concentration-based nutrient criteria in streams and their ecological[J]. Ecological Indicators,2013,32:51-61.
    [15] Black R W,Moran P W,Frankforter J D. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams[J]. Environmental Monitoring and Assessment,2011,175(1-4):397-417.
    [16] Potapova M, Charles D F. Diatom metrics for monitoring eutrophication in rivers of the United States[J]. Ecological Indicators,2007,7(1):48-70.
    [17] Porter S D,Mueller D K,Spahr N E,et al. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters[J]. Freshwater Biology,2008,53(5):1036-1054.
    [18]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [19] Lazorchak J M, Klemm D J, Peck D V. Environmental monitoring and assessment program-surface waters:field operations and methods for measuring the ecological condition of wadeable streams[R]. EPA/620/R-94/004F, Washington:EPA,1998. 119-132.
    [20]胡鸿钧,魏印心.中国淡水藻类:系统、分类及生态[M].北京:科学出版社,2006. 300-416.Hu H J,Wei Y X. The freshwater algae of China:systematics,taxonomy and ecology[M]. Beijing:Science Press,2006. 300-416.
    [21] Krammer K, Lange-Bertalot H. Bacillariophyceae 3. teil:centrales,fragilariaceae,eunotiaceae[A]. In:Ettl H,Gerloff J,Heynig H,et al(Eds.). Süsswasserflora von Mitteleuropa[M]. Jena:Gustav Fischer Verlag,1991. 1-576.
    [22]朱蕙忠,陈嘉佑.中国西藏硅藻[M].北京:科学出版社,2000.
    [23]中国科学院中国孢子植物志编辑委员会.中国淡水藻志(第一至二十卷)[M].北京:科学出版社,1988-2016.
    [24]贾兴焕,吴乃成,唐涛,等.香溪河水系附石藻类的时空动态[J].应用生态学报,2008,19(4):881-886.Jia X H,Wu N C,Tang T,et al. Spatiotemporal variation of epilithic algae in Xiangxi River system[J]. Chinese Journal of Applied Ecology,2008,19(4):881-886.
    [25]刘奕伶,葛继稳,李艳元,等.古夫河着生藻类优势种体积与水质因子的相关性研究[J].中国环境科学,2015,35(7):2182-2191.Liu Y L,Ge J W,Li Y Y,et al. Correlations between the volume of dominant periphytic algae species and the water quality parameters in Gufu River[J]. China Environmental Science,2015,35(7):2182-2191.
    [26]张蔚珍,于佳,夏午来,等.西湖湖西浮游与着生藻类季节变化及相互关系[J].水生生物学报,2017,41(4):896-903.Zhang W Z, Yu J, Xia W L, et al. Seasonal variation of phytoplankton and periphyton and their relationships in the western region of the west lake[J]. Acta Hydrobiologica Sinica,2017,41(4):896-903.
    [27]杨燕君,徐沙,刘瑞,等.基于附石藻类生物完整性指数对汝溪河水生态系统健康的评价[J].水生生物学报,2017,41(1):228-237.Yang Y J,Xu S,Liu R,et al. Using epilithic algae assemblages to assess stream heath of the Ruxi River, China[J]. Acta Hydrobiologica Sinica,2017,41(1):228-237.
    [28] Muscio C. The diatom pollution tolerance index:assigning tolerance values[R]. Austin:Watershed Protection&Development Review Department,2002.
    [29]汤婷,任泽,唐涛,等.基于附石硅藻的三峡水库入库支流氮、磷阈值[J].应用生态学报,2016,27(8):2670-2678.Tang T, Ren Z, Tang T, et al. Total nitrogen and total phosphorus thresholds for epilithic diatom assemblages in inflow tributaries of the Three Gorges Reservoir,China[J]. Chinese Journal of Applied Ecology,2016,27(8):2670-2678.
    [30]宋玉芝,薛艳,徐建强,等.太湖附泥藻类生物量空间分布及其与环境营养盐的关系[J].环境科学学报,2017,37(11):4178-4186.Song Y Z,Xue Y,Xu J Q,et al. Spatial distribution of epipelic algal biomass and its relationship with the environmental nutrients in Lake Taihu[J]. Acta Scientiae Circumstantiae,2017,37(11):4178-4186.
    [31] Leland H V,Porter S D. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use[J].Freshwater Biology,2010,44(2):279-301.
    [32] Blumenshine S C,Vadeboncoeur Y,Lodge D M,et al. Benthicpelagic links:responses of benthos to water-column nutrient enrichment[J]. Journal of the North American Benthological Society,1997,16(3):466-479.
    [33]李冰,王亚,郑钊,等.丹江口水库调水前后表层沉积物营养盐和重金属时空变化[J].环境科学,2018,39(8):3591-3600.Li B,Wang Y,Zheng Z,et al. Temporal and spatial changes in sediment nutrients and heavy metals of the Danjiangkou Reservoir before and after water division of the mid-route project[J].Environmental Science,2018,39(8):3591-3600.
    [34] Pizarro H,Vinocur A,Tell G. Periphyton on artificial substrata from three lakes of different trophic status at Hope Bay(Antarctica)[J]. Polar Biology,2002,25(3):169-179.
    [35] Quinlan E L, Phlips E J, Donnelly K A, et al. Primary producers and nutrient loading in Silver Springs,FL,USA[J].Aquatic Botany,2008,88(3):247-255.
    [36]渠晓东,曹明,邵美玲,等.雅砻江(锦屏段)及其主要支流的大型底栖动物[J].应用生态学报,2007,18(1):158-162.Qu X D,Cao M,Shao M L,et al. Macrobenthos in Jinping reach of Yalongjiang River and its main tributaries[J]. Chinese Journal of Applied Ecology,2007,18(1):158-162.
    [37]彭宇科,路俊玲,陈慧萍,等.蓝藻水华形成过程对氮磷转化功能细菌群的影响[J].环境科学,2018,39(11):4938-4945.Peng Y K,Lu J L,Chen H P,et al. Dynamic changes of nitrogen-transforming and phosphorus-accumulating bacteria along with the formation of cyanobacterial blooms[J]. Environmental Science,2018,39(11):4938-4945.
    [38]刘炎,石小荣,崔益斌,等.高浓度氨氮胁迫对纤细裸藻的毒性效应[J].环境科学,2013,34(11):4386-4391.Liu Y, Shi X R, Cui Y B, et al. Toxic effects of high concentrations of ammonia on Euglena gracilis[J].Environmental Science,2013,34(11):4386-4391.
    [39]刘盼,贾成霞,杨慕,等. 2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J].水产科学,2018,37(3):389-393.Liu P,Jia C X,Yang M,et al. Removal of ammonia and nitrite nitrogen in aquaculture water by two species of microalgae[J].Fisheries Science,2018,37(3):389-393.
    [40] Potapova M,Charles D F. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition[J].Freshwater Biology,2010,48(8):1311-1328.
    [41] Walker C E,Pan Y D. Using diatom assemblages to assess urban stream conditions[J]. Hydrobiologia,2006,561(1):179-189.
    [42] Chen X,Zhou W Q,Pickett S T A,et al. Diatoms are better indictors of stream conditions:A case study in Beijing,China[J]. Ecological Indicators,2016,60(1):265-274.
    [43] Leland H V. Distribution of phytobenthos in the Yakima River Basin,Washington,in relation to geology,land use and other environmental factors[J]. Canadian Journal of Fisheries and Aquatic Sciences,1995,52(5):1108-1129.
    [44] Leira M,Sabater S. Diatom assemblages distribution in Catalan rivers,NE Spain,in relation to chemical and physiographical factors[J]. Water Research,2005,39(1):73-82.
    [45] Eloranta P V. Periphyton growth and diatom community structure in a cooling water pond[J]. Hydrobiologia,1982,96(3):253-265.
    [46] Reynolds C S. The ecology of freshwater phytoplankton[M].Cambridge:Cambridge University Press,1984.
    [47]臧小苗,张远,林佳宁,等. 2009年与2014年太子河流域附石藻群落结构变化及其与水环境的关系[J].环境科学研究,2018,31(6):1057-1067.Zang X M,Zhang Y,Lin J N,et al. Variation of periphyton community structure in 2009,2014 and their relationship with environmental factors in Taizi River basin[J]. Research of Environmental Sciences,2018,31(6):1057-1067.
    [48] Bennion H. A diatom-phosphorus transfer function for shallow,eutrophic ponds in southeast England[J]. Hydrobiologia,1994,275-276(1):391-410.
    [49] GB 3838-2002,地表水环境质量标准[S].
    [50] Chambers P A,Culp J M,Roberts E S,et al. Development of environmental thresholds for streams in agricultural watersheds[J]. Journal of Environmental Quality,2012,41(1):1-6.
    [51] Lougheed V L,Parker C A,Stevenson R J. Using non-linear responses of multiple taxonomic groups to establish criteria indicative of wetland biological condition[J]. Wetlands,2007,27(1):96-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700