纳米金-罗丹明B协同作用在食品安全快速检测中的研究概述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the application of gold nanoparticles together with rhodamine B in rapid detection for food safety
  • 作者:常晓曦 ; 王佳 ; 宋杨 ; 陶晓奇
  • 英文作者:CHANG Xiaoxi;WANG Jia;SONG Yang;TAO Xiaoqi;College of Food Science,Southwest University;College of Pharmaceutical Sciences,Southwest University;Chongqing Engineering Research Center of Regional Food;
  • 关键词:纳米金 ; 罗丹明B ; 食品安全 ; 快速检测
  • 英文关键词:gold nanoparticles;;rhodamine B;;food safety;;rapid detection
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:西南大学食品科学学院;西南大学药学院;重庆市特色食品工程技术研究中心;
  • 出版日期:2018-10-31 14:47
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.378
  • 基金:国家自然科学基金面上项目(31672605);; 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0242);; 重庆市基础科学与前沿技术研究(cstc2017jcyjAX0313);; 重庆市博士后科研项目特别资助(Xm2017074);; 中国博士后科学基金面上资助(2016M590855)
  • 语种:中文;
  • 页:SPFX201906040
  • 页数:6
  • CN:06
  • ISSN:11-1802/TS
  • 分类号:247-252
摘要
纳米金粒子(gold nanoparticles,GNPs)是一种制备简单的贵金属纳米材料,具有良好的生物兼容性和光学性质。罗丹明B(rhodamine B,RB)是一种无毒的荧光染料,具备优异的水溶性、较高的消光系数和高的量子产率,二者在实验中均有较广泛的应用。研究发现,RB可以通过静电作用吸附到GNPs的表面,该结合物会产生荧光和可见光信号的变化,且该信号强度随着待测靶标浓度的改变而呈现一定趋势的变化。该文详细介绍了基于不同原理和检测信号的GNPs-RB协同作用,在检测食品中农兽药残留、重金属离子、非法添加物和外源性化学污染物等有毒有害物质的研究进展,以期为食品安全监控提供有益参考。
        Gold nanoparticles( GNPs) are simple noble metal nanomaterials with good biocompatibility and optical properties. Rhodamine B( RB) is a non-toxic fluorescent dye with excellent water-soluble property,high extinction coefficient and high quantum yield. Both GNPs and RB have been widely used in researches. It was found that RB could absorb to the surface of GNPs through electrostatic interactions,resulting in variations in fluorescence and visible signals along with the concentrations of analytes. Development of detecting toxic and harmful substances in foods,such as pesticides,veterinary drugs,heavy metal ions,illegal additives,and exogenous chemical pollutants,based on different mechanisms and detecting signals for the synergistic effect of GNPs-RB was described in detail in this paper,providing useful references for food safety monitoring.
引文
[1] LV Man,LIU Yang,GENG Jinhui,et al. Engineering nanomaterials-based biosensors for food safety detection[J]. Biosensors and Bioelectronics,2018,106:122-128.
    [2] MANGAL M,BANSAL S,SHARMA S K,et al. Molecular detection of foodborne pathogens:A rapid and accurate answer to food safety[J]. Critical Reviews in Food Science and Nutrition,2016,56(9):1 568-1 584.
    [3]徐李舟.基于量子点的荧光生物与化学传感器及其食品安全快速检测应用[D].杭州:浙江大学,2016.
    [4] SCHWACK W,PELLISSIER E,MORLOCK G. Analysis of unauthorized Sudan dyes in food by high-performance thin-layer chromatography[J]. Analytical&Bioanalytical Chemistry,2018,410(22):5 641-5 651.
    [5] FARAJZADEH M A,AFSHAR MOGADDAM M R,REZAEE A S,et al. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.[J]. Food Chemistry,2016,212:198-204.
    [6] WU Ci,CHEN Xi,LIU Jianhui,et al. High-sensitive detection of multiple allergenic proteins in infant food with high-resolution mass spectrometry[J]. Chinese Journal of Chromatography,2017,35(10):1 037-1 041.
    [7] CHEN Jieping,ZHU Xiashi. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples[J].Food Chemistry,2016,200:10-15.
    [8] YANG Xiao,DAI Juan,YANG Li,et al. Oxidation pretreatment by calcium hypochlorite to improve the sensitivity of enzyme inhibition‐based detection of organophosphorus pesticides[J]. Journal of the Science of Food&Agriculture,2018,98(7):2 624-2 631.
    [9] HAYATI M,SUDJADI,ROHMAN A. Analysis of Salmonella enteritidis in chicken meat and egg by real time-polymerase chain reaction[J]. International Food Research Journal,2017,24(6):2 689-2 693.
    [10] TIAN Wenhao,ZHANG Xiaoxiao,SONG Meirong,et al.An enzyme-linked immunosorbent assay to detect salinomycin residues based on immunomagnetic bead clean-up[J]. Food Analytical Methods,2017,10(9):3 042-3 051.
    [11] SONG Yanchao,FENG Duan,SHAO Shuai,et al. Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation[J]. Talanta,2018,187:308-313.
    [12] ASNAASHARI M,KENARI R E,FARAHMANDFAR R,et al. Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles[J]. Sensors&Actuators B Chemical,2018,265:339-345.
    [13] FAN Taotao,DU Yan,YAO Yao,et al. Rolling circle amplification triggered poly adenine-gold nanoparticles production for label-free electrochemical detection of thrombin[J]. Sensors&Actuators B Chemical,2018,266:9-18.
    [14] HASHEMI F,RASTEGARZADEH S,POURREZA N. A combination of dispersive liquid-liquid microextraction and surface plasmon resonance sensing of gold nanoparticles for the determination of ziram pesticide[J]. Journal of Separation Science,2018,41(5):1 156-1 163.
    [15] JIAO Yang,ZHOU Lu,HE Haiyang,et al. A novel rhodamine B-based “off-on”fluorescent sensor for selective recognition of copper(Ⅱ)ions[J]. Talanta,2018,184:143-148.
    [16] WAN Liping,QIN Yun,XIANG Juan. Rapid electrochemical fabrication of porous gold nanoparticles for highperformance electrocatalysis towards oxygen reduction[J]. Electrochimica Acta,2017,238:220-226.
    [17] NI Xuan,XIA Bing,WANG Lumei,et al. Fluorescent aptasensor for 17 beta-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B[J]. Analytical Biochemistry,2017,523:17-23.
    [18] HUANG Chihching,CHANG Huan-tsung. Selective goldnanoparticle-based “turn-on”fluorescent sensors for detection of mercury(Ⅱ)in aqueous solution[J]. Analytical Chemistry,2006,78(24):8 332-8 338.
    [19] CAI Huaihong,WANG Hui,WANG Jinhui,et al. Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET[J]. Dyes and Pigments,2012,92(1):778-782.
    [20] WANG Chengke,TAN Rong,CHEN Dan. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles[J]. Talanta,2018,182:363-370.
    [21] XU Jingyue,LI Ying,WANG Luokai,et al. A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles[J]. Dyes and Pigments,2015,123:55-63.
    [22] ZHAN Shenshan,XU Hanchu,ZHAN Xuejia,et al. Determination of silver(I)ion based on the aggregation of gold nanoparticles caused by silver-specific DNA,and its effect on the fluorescence of Rhodamine B[J]. Microchimica Acta,2015,182(7-8):1 411-1 419.
    [23]吕晶,徐鲁荣,杜高尚,等.基于核酸适配体的纳米金淬灭罗丹明B荧光法检测氨苄青霉素[J].上海交通大学学报(农业科学版),2017,35(1):34-41.
    [24] TIRA D S,FOCSAN M,ULINICI S,et al. Rhodamine B-coated gold nanoparticles as effective“Turn-on”fluorescent sensors for detection of zincⅡions in water[J].Spectroscopy Letters,2014,47(2):153-159.
    [25] ZHENG Aifang,CHEN Jinlong,WU Ganning,et al. Optimization of a sensitive method for the“switch-on”determination of mercury(Ⅱ)in waters using Rhodamine B capped gold nanoparticles as a fluorescence sensor[J].Microchimica Acta,2009,164(1-2):17-27.
    [26]裴智明,莫志宏,吕佳,等.纳米金-染料传感器阵列对汞(Ⅱ)的模式识别[J].分析化学,2013,41(6):841-845.
    [27] LIU Dingbin,CHEN Wenwen,WEI Jinhua,et al. A highly sensitive,dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides[J]. Analytical Chemistry,2012,84(9):4 185-4 191.
    [28] DONG Liang, HOU Changjun, FA Huanbao, et al.Highly sensitive fluorescent sensor for Cartap based on fluorescence resonance energy transfer between gold nanoparticles and rhodamine B[J]. Journal of Nanoscience and Nanotechnology,2018,18(4):2 441-2 449.
    [29] CAO Xianyi,SHEN Fei,ZHANG Minwei,et al. Highly sensitive detection of melamine based on fluorescence resonance energy transfer between rhodamine B and gold nanoparticles[J]. Dyes and Pigments,2014,111:99-107.
    [30] FILBRUN S L,DRISKELL J D. A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles[J]. Analyst,2016,141(12):3 851-3 857.
    [31] AMJADI M,HASSANZADEH J,MANZOORI J L. Determination of cyanide using a chemiluminescence system composed of permanganate,rhodamine B,and gold nanoparticles[J]. Microchimica Acta,2014,181(15-16):1 851-1 856.
    [32] VAHID B,HASSANZADEH J,ABOLHASANI J,et al.Inhibition of rhodamine B-ferricyanide chemiluminescence by Au nanoparticles toward the sensitive determination of mercury(Ⅱ)ions[J]. Microchemical Journal,2016,126:326-331.
    [33]吴永祥.用于细胞分析的新型荧光探针的设计、合成及传感性能研究[D].长沙:湖南大学,2015.
    [34]朱颖,刘沛,羊小海,等.基于T-Hg2+-T及G四聚体自身熄灭能力的“Turn on”型单标记DNA荧光探针用于碘离子的检测[J].高等学校化学学报,2012,33(12):2 651-2 656.
    [35]王青,刘卫,羊小海,等.纳米金颗粒增强信号的电化学生物传感器用于谷胱甘肽和半胱氨酸的检测[J].高等学校化学学报,2013,34(8):1 845-1 850.
    [36]薛瑞,康天放,鲁理平.层层自组装纳米金与乙酰胆碱酯酶电化学生物传感器检测有机磷农药[J].分析测试学报,2012,31(8):940-944.
    [37] PENG D,HU B,KANG M,et al. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(Ⅱ)[J]. Applied Surface Science,2016,390:422-429.
    [38] XIN Jiaying,DOU Boxin,WANG Zhenxing,et al. Direct electrochemistry of methanobactin functionalized gold nanoparticles on Au electrode[J]. Journal of Nanoscience&Nanotechnology,2018,18(7):4 805-4 813.
    [39]耿美,李忠海,黎继烈,等.基于纳米金的电化学DNA生物传感器的研究进展[J].食品工业,2013(7):117-120.
    [40] YU Wenbo,ZHANG Tingting,MA Mingfang,et al. Highly sensitive visual detection of amantadine residues in poultry at the ppb level:A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation[J].Analytica Chimica Acta,2018,1 027:130-136.
    [41] LI Chao,YANG Yucai,ZHANG Bin,et al. Conjugation of graphene oxide with DNA-modified gold nanoparticles to develop a novel colorimetric sensing platform[J]. Particle&Particle Systems Characterization,2014,31(2):201-208.
    [42] SIMON T,SHELLAIAH M,STEFFI P,et al. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples[J]. Analytica Chimica Acta,2018,1 023:96-104.
    [43] LUO Hairui,WANG Xiaohui,HUANG Yiqun,et al.Rapid and sensitive surface-enhanced Raman spectroscopy(SERS)method combined with gold nanoparticles for determination of paraquat in apple juice[J]. Journal of the Science of Food&Agriculture,2018,98(10):3 892-3 898.
    [44] SONG Dandan,WANG Yuanzhe,LU Xiong,et al. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2,nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides[J]. Sensors&Actuators B Chemical,2018,267:5-13.
    [45] RAJABI M,RAHIMI M,HEMMATI M,et al. Chemically functionalized silica nanoparticles‐based solid‐phase extraction for effective pre‐concentration of highly toxic metal ions from food and water samples[J]. Applied Organometallic Chemistry,2018,32(2):e4012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700