汽车板与轧辊表面粗糙度变化及控制技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research development of automobile plate and roll surface roughness variation and control technology
  • 作者:瞿海霞 ; 顾廷权 ; 范群
  • 英文作者:QU Haixia;GU Tingquan;FAN Qun;Research Institute,Baoshan Iron & Steel Co.,Ltd.;
  • 关键词:汽车板 ; 轧辊 ; 表面粗糙度 ; 转印率 ; 控制技术
  • 英文关键词:automobile plate;;roll;;surface roughness;;transferring rate;;control technology
  • 中文刊名:BGJS
  • 英文刊名:Baosteel Technology
  • 机构:宝山钢铁股份有限公司研究院;
  • 出版日期:2018-10-15
  • 出版单位:宝钢技术
  • 年:2018
  • 期:No.201
  • 语种:中文;
  • 页:BGJS201805003
  • 页数:9
  • CN:05
  • ISSN:31-1499/TF
  • 分类号:12-19+23
摘要
汽车板表面粗糙度对其冲压性能和涂装性能有重要影响,而汽车板表面的粗糙度和形貌是通过轧辊在轧制过程中转印形成的,因此,汽车板和轧辊表面粗糙度变化及控制技术倍受国内外学者的关注。综述了汽车板与轧辊表面粗糙度研究方法、分析技术、预测模型、转印规律及控制技术的发展趋势和研究进展。其中,汽车板和轧辊表面粗糙度在线测量系统已在德国、中国、比利时、荷兰、奥地利等国家的生产线应用,并取得了显著的成效。汽车板和轧辊表面粗糙度的在线测量和及时反馈,为汽车板粗糙度控制措施的制定提供条件。
        Surface roughness has great influence on the stamping and coating performance of automobile plate,however,the surface roughness of automobile plate is transferred from the roll during the rolling process. Therefore,the variation and control technology of roughness of automobile plate and rolls had drawn more and more attentions from domestic and foreign researchers. Research methods,analytical techniques,prediction models,transfer rules and control technologies of automotive plate and roll surface roughness were reviewed. Among them,the on-line measuring system of automobile plate and roll surface roughness had been applied in the production lines of Germany,China,Belgium,Holland,Austria and other countries,and achieved remarkable results. The on-line measurement and timely feedback of the automobile plate and roll surface roughness could provide the good conditions for the establishment of automobile plate roughness controlling measurement.
引文
[1]张新鹏,张清东,白剑,等.冷轧带钢表面粗糙度预测模型研究[J].冶金设备,2008(5):42-45.
    [2]吴长春,张杰,曹建国,等.轧辊与钢板表面形貌的功能特征参数[J].北京科技大学学报,2006,28(3):282-285.
    [3]白振华,王骏飞.冷连轧机成品板面粗糙度控制技术的研究[J].钢铁,2006,41(11):46-49.
    [4]李伯奎,刘远伟.表面粗糙度理论发展研究[J].工具技术,2004,38(1):63-67.
    [5]董友耕,管声启.使用光学测量表面粗糙度方法比较研究[J].组合机床与自动化加工技术,2009(8):80-83.
    [6]杨溪林,金国藩,焦景民.多束激光热轧带钢板形测量仪的开发与研究[J].冶金自动化,1997(1):24-28.
    [7] Ozkul T. Design of an embedded device for surface roughness measurement[C]∥IEEE International Conference on Computer Systems and Applications,Sharjah,United Arab Emirates,2006:511-514.
    [8] Pavalache A C,Vasile I M,Stanciu E M,et al. Case study about the effect of measurement parameters values on the microhardness results[C]∥IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement,AMUEM,2009:54-57.
    [9] Sampaio A L,Lob2o D C,Nunes L C S,et al. Hurst exponent determination for digital speckle patterns in roughness control of metallic surfaces[J]. Opt. Lasers Eng.,2011,49(1):32-35.
    [10] Jeyapoovan T,Murugan M. Statistical analysis of surface roughness measurements using laser speckle images Bovas[C]∥B. C. Info. Comm. Tech.(WICT),Helsingborg,Sweden,2012:378-382.
    [11] Paul K U,WANG H F. White light interferometry for surface profiling with a colour CCD[J]. Opt. Lasers Eng.,2012,50(8):1084-1088.
    [12]蒋剑峰,何永辉,赵万生.利用CCD进行光切法测量的研究[J].计量技术,1999(8):7-10.
    [13] Beckmann P. The scattering of electromagnetic waves from rough surfaces[M]. London:Pergamon,1963:12-43.
    [14]郑俊丽,赵学增,周莉莉,等.表面粗糙度的激光非接触检测方法[J].激光与红外,2005,35(3):148-150.
    [15] Gonzalez-Diaz J B,Arregi J A,Martinez-de-Guerenu A,et al.Quantitative magneto-optical characterization of diffusive reflected light from rough steel samples[J]. J. Appl. Phys.,2013,113(15):1-5.
    [16] WANG S H,TIAN Y H. Development of a laser-scatteringbased probe for on-line measurement of surface roughness[J].Appl. Optics,2003,42(7):1318-1324.
    [17] Moreas G,Bilstein W,Tusset V.镀锌板粗糙度和形貌的工业在线测量[J].冶金分析,2012,32(1):29-33.
    [18]何亮.冷轧薄板板形与表面粗糙度控制研究[D].重庆:重庆大学,2006.
    [19]陆胜,罗泽举,刘锬.基于神经网络的轧辊磨削表面粗糙度智能预测[J].组合机床与自动化加工技术,2008(2):15-17.
    [20]于孟,张清东,李瑞,等. R2级表面镀锡基板平整轧制过程表面粗糙度控制[J].钢铁,2010,45(12):44-49.
    [21]高登,穆景权.平整工艺对不锈钢表面粗糙度的影响分析[J].山西冶金,2016,39(2):39-40.
    [22]张广建,孙蓟泉,郭衍振,等.热轧薄板钢轧制周期内表面粗糙度变化规律的研究[J].山东冶金,2008,30(5):42-45.
    [23]张清东,张勃洋,马磊,等.高强度带钢表面粗糙度轧制转印规律及预测模型[J].工程科学学报,2016,38(1):118-127.
    [24]吴越,张清东,刘军,等.带钢冷轧机工作辊表面粗糙度实测研究[J].机械工程学报,2003,39(11):90-94.
    [25]张清东,张雍,李瑞,等.带钢冷轧机工作辊表面粗糙峰轧制磨损过程离散元法研究[J].机械工程学报,2016,52(6):72-85.
    [26]刘凤鹤,刘天增.二十辊轧机工作辊对SUS304带钢表面粗糙度的影响[J].甘肃冶金,2014,36(2):48-50.
    [27] Bein B K,Fotsing J L N,Gibkes J,et al. Surface modifications and surface-protective coatings analyzed by means of thermal waves(invited)(abstract)[J]. Rev. Sci. Instruments,2003,74(1):800-800.
    [28]张理扬,左良,李俊,等.冷轧和镀锌汽车板的发展[J].特殊钢,2004,25(6):1-6.
    [29] HOU Y L,MA X Y,LI C H. Surface microcosmic morphology evaluation of finished by abrasive jet with grinding wheel as restraint[C]∥Control and Decision Conference(CCDC),Guilin,Guangxi,2009:1379-1383.
    [30]李欣波,宋和川,侯彬,等.热轧带钢与轧辊表面粗糙度横向差异控制技术研究[J].冶金设备,2016(2):1-5.
    [31]陈金山,李长生,曹勇.轧辊粗糙度对不锈钢板带表面和工艺参数的影响[J].机械工程学报,2013,49(4):30-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700