基于MODIS密集时间序列数据的塔里木河下游植被活动过程监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal dynamics of vegetation activities in the lower reach of the Tarim River based on MODIS intensive time series data
  • 作者:朱长明 ; 李均力 ; 沈占锋 ; 沈谦
  • 英文作者:ZHU Changming;LI Junli;SHEN Zhanfeng;SHEN Qian;Department of Geography and Environment, Jiangsu Normal University;Xinjiang Institute of Ecology and Geography, CAS;Institute of Remote Sensing and Digital Earth, CAS;University of Chinese Academy of Sciences;
  • 关键词:植被覆盖度 ; MODIS ; 塔里木河 ; 遥感监测 ; 生态输水
  • 英文关键词:fractional vegetation cover(FVC);;MODIS;;Tarim River;;remote sensing monitoring;;econological water conveyance
  • 中文刊名:ZRZY
  • 英文刊名:Resources Science
  • 机构:江苏师范大学地理与测绘学院;中国科学院新疆生态与地理研究所;中国科学院遥感与数字地球研究所;中国科学院大学;
  • 出版日期:2019-03-25
  • 出版单位:资源科学
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划项目(2017YFB0504204);; 国家自然科学基金项目(41671034,41201460,U1178302)
  • 语种:中文;
  • 页:ZRZY201903017
  • 页数:10
  • CN:03
  • ISSN:11-3868/N
  • 分类号:179-188
摘要
针对塔里木河下游生态输水的绩效评估和环境效益问题,本文采用2000—2017年的16天合成的MOD13Q1密集时序NDVI数据,辅助以GF-2数据,反演和监测塔里木河下游植被覆盖度(FVC)变化;进而通过最大和平均植被覆盖度指标,探讨了塔里木河下游植被在生态输水条件下的生长和恢复情况。结果表明:总体上,近20年来随着塔河的综合治理工程和人工生态调水工程的推进,塔河下游植被恢复明显,最大植被覆盖度和平均植被覆盖度均呈现显著增加的趋势(P<0.01),高植被覆盖区从2000年的3425.95 km~2增加到2017年5486.52 km~2,中植被覆盖区从2000年的6508.18 km~2增加到2015年的7131.23 km~2。在时间演化过程上,区域植被覆盖度上升变化过程中存在波动性和不稳定性,整个过程可分为3个阶段(2000—2005年快速上升,2006—2009年波动下降,和2010—2017年稳步上升)。在空间格局上,2000—2017年间FVC增加区域主要分布在河道两旁和河流的尾闾湿地,距离河道越近植被恢复越好,远离河道10 km FVC变化特征不显著(P>0.05)。结合下游生态输水数据分析表明,塔河下游植被恢复与输水量之间存在强依赖关系,且对生态输水的响应存在时间滞后性。
        For the assessment of environmental benefits and performance of ecological water conveyance in the lower reaches of the Tarim River, this study detected and assessed riparian vegetation restoration by the MODIS 250 m 16-day synthetic product of MOD13 Q1 from 2000 to2017. Fractional vegetation cover(FVC) was used as the main ecological index that was estimated by a pixel dichotomy mode based on MOD13 Q1 Normalized Difference Vegetation Index(NDVI)and GF-2 data. Annual maximum and average vegetation coverages were used for comprehensively exploring the vegetation growth and recovery in the lower reach of the Tarim River basin. The results show that: vegetation activities in the basin enhanced in the past decades after the ecological water transfer. Regional maximum and average FVC increased significantly(P<0.01). The high vegetation coverage area increased from 3425.95 km~2 in 2000 to 5486.52 km~2 in 2017, and the medium vegetation coverage area increased from 6508.18 km~2 in 2000 to 7131.23 km~2 in 2015.Temporally, fluctuations were observed in the process of regional vegetation coverage increase.The process can be divided into three stages:(1) the rapid increase stage from 2000 to 2005;(2)fluctuations in 2006-2009; and(3) steady rising in 2010-2017. Spatially, the areas of vegetation increase are mainly distributed on both sides of the river and the river's tail wetland between 2000 and 2017. The closer to the river, the better the vegetation was restored. At more than 10 km away from the river, the FVC change characteristics are not significant(P>0.05). Combined with the analysis of downstream ecological water transfer data, there is a strong dependence between vegetation restoration and the volume of water transfer in the lower reach of the Tarim River.Moreover, there is a time lag in the response of vegetation restoration to ecological water transfer.
引文
[1]吴云,曾源,赵炎,等.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学, 2010, 32(7):1417-1424.[Wu Y, Zeng Y, Zhao Y, et al. Monitoring and dynamic analysis of fractional vegteation cover in the Hai river basin based on MODIS data[J]. Resources Science, 2010, 32(7):1417-1424.]
    [2]王士飞,包安明,王永琴,等.水情波动下2006-2011年塔里木河下游植被变化研究[J].水土保持通报, 2013, 33(4):131-135.[Wang S F, Bao A M, Wang Y Q, et al. Change of vegetation voverage under hydrological fluctuations in lower leaches of Tarim river basin[J]. Bulletin of Soil and Water Conservation, 2013, 33(4):131-135.]
    [3]穆少杰,李建龙,陈奕兆,等. 2001-2010年内蒙古植被覆盖度时空变化特征[J].地理学报, 2012, 67(9):1255-1268.[Mu S J,Li J L, Chen Y Z, et al. Spatial differences of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica,2012, 67(9):1255-1268.]
    [4]冯莉莉,何贞铭,刘学锋,等.基于MODIS-NDVI数据的吉林省植被覆盖度及其时空动态变化[J].中国科学院大学学报,2014, 31(4):492-499.[Feng L L, He Z M, Liu X F, et al. Dynamic monitoring of the fractional vagetation cover in Jilin province based on MODIS-NDVI data[J]. Journal of University of Chinese Academy of Science, 2014, 31(4):492-499.]
    [5] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to1999[J]. Science, 2003, 300(5625):1560-1563.
    [6] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386(6626):698-702.
    [7]方精云,朴世龙,贺金生,等.近20年来中国植被活动在增强[J].中国科学, 2003, 33(6):554-565.[Fang J Y, Piao S L, He J S,et al. China's vegetation activities have been increasing in the past 20 years[J]. Science in China, 2003, 33(6):554-565.]
    [8]陈怀亮,徐祥德,杜子璇,等.黄淮海地区植被活动对气候变化的响应特征[J].应用气象学报, 2009, 20(5):513-520.[Chen H L, Xu X D, Du Z X, et al. Vegetation activity responses to climate change in the Huang Huai Hai Area based on GIMMS NDVI dataset[J]. Journal of Applied Meterological Science, 2009, 20(5):513-520.]
    [9]赵霞,谭琨,方精云. 1982-2006年新疆植被活动的年际变化及其季节差异[J].干旱区研究, 2011, 28(1):10-16.[Zhao X, Tan K, Fang J Y. NDVI-based interannual and seasonal variations of vegetation activity in Xinjiang during the period of 1982-2006[J].Arid Zone Research, 2011, 28(1):10-16.]
    [10]杜加强,贾尔恒·阿哈提,赵晨曦,等. 1982-2012年新疆植被NDVI的动态变化及其对气候变化和人类活动的响应[J].应用生态学报, 2015, 26(12):3567-3578.[Du J Q, Jiaerheng A, Zhao C X, et al. Dynamic changes in vegetation NDVI from 1982 to2012 and its responses to climate change and human activities in Xinjiang[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3567-3578.]
    [11] Wang X, Tan K, Chen B, et al. Assessing the spatiotemporal variation and impact factors of net primary productivity in China[J]. Scientific Reports, 2017, DOI:10. 1038/srep44415.
    [12] Jiapaer G, Chen X, Bao A. A comparison of methods for estimating fractional vegetation cover in arid regions[J]. Agricultural and Forest Meteorology, 2011, 151(12):1698-1710.
    [13] Xiao J, Moody A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central new mexico, USA[J]. Remote Sensing of Environment, 2005, 98(2):237-250.
    [14] Zhu X, Yuan G, Yi X, et al. Quantifying the impacts of river hydrology on riparian vegetation spatial structure:Case study in the lower basin of the Tarim River, China[J]. Ecohydrology, 2017, 10(7):1-9.
    [15]盛昊,李均力,杨辽,等. MODIS-NDVI时序数据分析方法研究:以塔里木河下游第七次秋季输水为例[J].干旱区地理, 2007,30(2):251-256.[Sheng H, Li J L, Yang L, et al. MODIS-NDVI time series method:A case study on the 7th autumn ecologic water conveyancein the lower reaches of Tarim river[J]. Arid Land Geography, 2007, 30(2):251-256.]
    [16]邓铭江.塔里木河下游生态输水及植被恢复遥感监测评价[J].冰川冻土, 2007, 29(3):380-386.[Deng M J. An appraisal of remote-sensing monitoring on vegetation restoration and ecological water-conveying in the lower reaches of Tarim River[J]. Journal ofGlaciology and geocryology, 2007, 29(3):380-386.]
    [17]黄粤,包安明,王士飞,等.间歇性输水影响下的2001-2011年塔里木河下游生态环境变化[J].地理学报, 2013, 68(9):1251-1262.[Huang Y, Bao A M, Wang S F, et al. Eco-environmental change in the lower Tarim River under the influence of intermittent water transport[J]. Acta Geographica Sinica, 2013, 68(9):1251-1262.]
    [18]邓铭江,周海鹰,徐海量,等.塔里木河下游生态输水与生态调度研究[J].中国科学:技术科学, 2016, 46(8):864-876.[Deng M J, Zhou H Y, Xu H L, et al. Research on the ecological operation in the lower reaches of Tarim River based on water conveyance[J].Scientia Sinica Technologica, 2016, 46(8):864-876.]
    [19]郝兴明,陈亚宁,李卫红,等.塔里木河中下游荒漠河岸林植被对地下水埋深变化的响应[J].地理学报, 2008, 63(11):1123-1130.[Hao X M, Chen Y N, Li W H, et al. Response of desert riparian forest vegetation to groundwater depth changes in the middle and lower Tarim river[J]. Acta Geographica Sinica, 2008, 63(11):1123-1130.]
    [20]闫正龙,黄强,牛宝茹.应急输水工程对塔里木河下游地区植被覆盖度的影响[J].应用生态学报, 2008, 19(3):621-626.[Yan Z L, Huang Q, Niu B R. Effects of emergent water project on vegetation coverage in the lower reaches of Tarim river[J]. Chinese Journal of Applied Ecology, 2008, 19(3):621-626.]
    [21] Bao A M, Huang Y, Ma Y G, et al. Assessing the effect of ewdp on vegetation restoration by remote sensing in the lower reaches of tarim river[J]. Ecological Indicators, 2017, 74:261-275.
    [22]贾俊姝,孟悦,戴俊生,等.生态输水对塔里木河下游地下水时空分布特征的影响[J].内蒙古农业大学学报:自然科学版,2016, 37(5):81-90.[Jia J Z, Meng Y, Dai J S, et al. Affect on characteristic of groundwater spatial and temporal distribution after ecological water transport in the lower reaches of Tarim river[J]. Journal of Inner Mongolia Agricultural:Natural Science Edition, 2016, 37(5):81-90.]
    [23]闫正龙,汤国安.塔里木河下游生态应急输水植被恢复的遥感监测[J].水土保持通报, 2005, 25(3):58-60.[Yan Z L, Tang G A.Remote sensing based monitor of vegetation recovery in lower reaches of Tarim River following implementation of emergent water transportation project[J]. Bulletin of Soil and Water Conservation, 2005, 25(3):58-60.]
    [24]郭玉川,何英,李霞.基于MODIS的干旱区植被覆盖度反演及植被指数优选[J].国土资源遥感, 2011, 23(2):115-118.[Guo Y C,He Y, Li X. Remote sensing inversion of vegetation coverage and optimization of vegetation index based on MODIS data in arid area[J]. Remote Sensing for Land&Resources, 2011, 23(2):115-118.]
    [25]罗敏,古丽·加帕尔,郭浩,等. 2000-2013年塔里木河流域生长季NDVI时空变化特征及其影响因素分析[J].自然资源学报,2017, 32(1):50-63.[Luo M, Guli J, Guo H, et al. Spatial-temporal variation of growing-season NDVI and its responses to hydrothermal condition in the Tarim River Basin from 2000 to 2013[J].Jouranl of Natural Resources, 2017, 32(1):50-63.]
    [26]李苗苗,吴炳方,颜长珍,等.密云水库上游植被覆盖度的遥感估算[J].资源科学, 2004, 26(4):153-159.[Li M M, Wu B F, Yan C Z, et al. Estimation of vegetation fraction in the upper basin of Miyun reservior by remote sensing[J]. Resource Science, 2004, 26(4):153-159.]
    [27] Ding Y L, Zheng X M, Zhao K, et al. Quantifying the impact of NDVIsoil determination methods and NDVIsoil variability on the estimation of fractional vegetation cover in Northeast China[J]. Remote Sensing, 2016, 8(1):1-15.
    [28]牛宝茹,刘俊蓉,王政伟.干旱半干旱地区植被覆盖度遥感信息提取研究[J].武汉大学学报(信息科学版), 2005, 30(1):27-30.[Niu B R, Liu J R, Wang Z W. Remote sensing information extraction based on vegetation fraction in drought and half-drought area[J]. Geomatics and Information Science of Wuhan University, 2005,30(1):27-30.]
    [29]郭继凯,吴秀芹,董贵华,等.基于MODIS/NDVI的塔里木河流域植被覆盖变化驱动因素相对作用分析[J].干旱区研究,2017, 34(3):621-629.[Guo J K, Wu X Q, Dong G H, et al. Vegetation coverage change and relative effects of driving factors based on MODIS/NDVI in the Traim River Basin[J]. Arid Zone Research,2017, 34(3):621-629.]
    [30]徐海量,叶茂,李吉玫.塔里木河下游输水后地下水动态变化及天然植被的生态响应[J].自然科学进展, 2007, 17(4):460-470.[Xu H L, Ye M, Li J M. Dynamic changes of groundwater and ecological response of natural vegetation after water transport in the lower reaches of the Tarim River[J]. Progress in Natural Science,2007, 17(4):460-470.]
    [31]王希义,徐海量,潘存德,等. 2000-2014年塔里木河下游地下水补给量及合理需求量[J].水资源保护, 2017, 33(4):32-39.[Wang X Y, Xu H L, Pan C D, et al. Study on groundwater recharge amount and suitable demand in lower reaches of Tarim river from 2000 to 2014[J]. Water Resources Protection, 2017, 33(4):32-39.]
    [32]安红燕,叶茂,徐海量.塔里木河下游胡杨径向生长量对生态输水的响应[J].中国沙漠, 2011, 31(4):957-962.[An H Y, Ye M,Xu H L. Response of radial increment of populus euphratica to ecological water conveyance in lower reaches of the tarim river[J].Journal of Desert Research, 2011, 31(4):957-962.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700