气动肌肉肘关节的滑模内环导纳控制设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Admittance Control with Sliding Mode for Elbow Joint Actuated by Pneumatic Muscle
  • 作者:王斌锐 ; 靳明涛 ; 沈国阳 ; 金英连 ; 陈迪剑
  • 英文作者:WANG Bin-rui;JIN Ming-tao;SHEN Guo-yang;JIN Ying-lian;CHEN Di-jian;College of Mechanical and Electrical Engineering,China Jiliang University;
  • 关键词:共融机器人 ; 气动肌肉 ; 肘关节 ; 滑模控制 ; 导纳控制 ; 接触力
  • 英文关键词:human-robot;;pneumatic muscle;;elbow joint;;sliding mode control;;admittance control;;contact force
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:中国计量大学机电工程学院;
  • 出版日期:2018-06-15
  • 出版单位:兵工学报
  • 年:2018
  • 期:v.39;No.255
  • 基金:国家自然科学基金项目(51575503);; 国家重点研发计划项目(2017YFC0804609)
  • 语种:中文;
  • 页:BIGO201806025
  • 页数:6
  • CN:06
  • ISSN:11-2176/TJ
  • 分类号:196-201
摘要
柔顺控制是共融机器人研究的重点。针对级联式气动肌肉肘关节动力学模型,建立了以滑模位置控制为内环、触力导纳控制为外环的控制结构;设计了带干扰观测器的滑模控制器(SMCDO),证明SMCDO算法的收敛性;将环境等效为弹簧模型,设计了外环导纳控制器,并给出控制律。搭建实物测试平台,分别开展阈值力、力安全阈值测试以及碰撞测试,并分析了刚度系数对修正轨迹和接触力的影响。实验结果表明:关节柔顺性与刚度系数相关;SMCDO内环导纳控制精度优于无干扰观测器的滑模控制器内环导纳控制;所设计的控制算法稳定且有效。
        The compliance control is a research focus of human-robot collaboration. For the dynamic model of the cascaded elbow joint actuated by pneumatic muscle,a control structure is established with sliding mode position control as inner loop and contact force admittance control as outer loop. A sliding mode controller with disturbance observer( SMCDO) is designed,and the convergence of SMCDO control algorithm can be illustrated. An admittance controller is designed as the outer loop and the control law is given by treating the environment as a spring model. A real experimental platform is built to test the threshold force,security threshold force,and collision for the handshaking action,and also analyze the influence of stiffness parameter on the angle modified trajectory and contact force. Experimental results show that the compliance is related to stiffness parameter,and the control accuracy of SMCDO admittance controller is higher than that of the SMC admittance controller without disturbance observer. The proposed control algorithm is stable and effective.
引文
[1]何玉庆,赵忆文,韩建达,等.与人共融——机器人技术发展的新趋势[J].机器人产业,2015(5):74-80.HE Yu-qing,ZHAO Yi-wen,HAN Jian-da,et al.Co-existence with humans-the new trend of robot technology development[J].Robot Industry,2015(5):74-80.(in Chinese)
    [2]丁汉.共融机器人的基础理论和关键技术[J].机器人产业,2016(6):12-17.DING Han.The basic theory and key technology of human-robot harmony[J].Robot Industry,2016(6):12-17.(in Chinese)
    [3]Jamwal P K,Hussain S,Ghayesh M H,et al.Impedance control of an intrinsically compliant parallel ankle rehabilitation robot[J].IEEE Transactions on Industrial Electronics,2016,63(6):3638-3647.
    [4]Li Z J,Huang Z C,He W,et al.Adaptive impedance control for an upper limb robotic exoskeleton using biological signals[J].IEEE Transactions on Industrial Electronics,2017,64(2):1664-1674.
    [5]Culmer P,Jackson A,Levesley M C,et al.An admittance control scheme for a robotic upper-limb stroke rehabilitation system[C]∥Proceedings of the 27th Annual International Conference on the Engineering in Medicine and Biology Society.Shanghai:IEEE,2006:5081-5084.
    [6]韩亚丽,许有熊,高海涛,等.基于导纳控制的膝关节外骨骼摆动控制研究[J].自动化学报,2016,42(12):1943-1950.HAN Ya-li,XU You-xiong,GAO Hai-tao,et al.Kneejoint exoskeleton swing control with admittance control[J].Acta Automatica Sinica,2016,42(12):1943-1950.(in Chinese)
    [7]Yu W,Rosen J,Li X.PID admittance control for an upper limb exoskeleton[C]∥Proceedings of American Control Conference.San Francisco,CA,US:IEEE,2011:1124-1129.
    [8]Dimeas F,Moulianitis V C,Papakonstantinou C,et al.Manipulator performance constraints in Cartesian admittance control for human-robot cooperation[C]∥Proceedings of IEEE International Conference on Robotics and Automation.Stockholm,Sweden:IEEE,2016:3049-3054.
    [9]Dimeas F,Aspragathos N.Online stability in human-robot cooperation with admittance control[M].Atlanta,GA,US:IEEE,2016.
    [10]Ayas M S,Altas I H.Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot[J].Control Engineering Practice,2017,59:44-54.
    [11]Landi C T,Ferraguti F,Sabattini L,et al.Admittance control parameter adaptation for physical human-robot interaction[C]∥Proceedings of the 2017 IEEE International Conference on Robotics and Automation.Singapore:IEEE,2017:2911-2916.
    [12]Ott C,Mukherjee R,Nakamura Y.Unified impedance and admittance control[C]∥Proceedings of the 2010 IEEE International Conference on Robotics and Automation.Alaska,US:IEEE,2010:554-561.
    [13]Ott C,Mukherjee R,Nakamura Y.A hybrid system framework for unified impedance and admittance control[J].Journal of Intelligent&Robotic Systems,2015,78(3):359-375.
    [14]王斌锐,沈国阳,金英连,等.基于干扰观测器的级联气动肌肉肘关节滑模控制[J].兵工学报,2017,38(4):793-801.WANG Bin-rui,SHEN Guo-yang,JIN Ying-lian,et al.Sliding mode control of cascade pneumatic muscles of elbow joint based on disturbance observer[J].Acta Armamentarii,2017,38(4):793-801.(in Chinese)
    [15]刘金琨.滑模变结构控制MATALB仿真:基本理论与设计方法[M].北京:清华大学出版社,2015.LIU Jin-kun.The sliding mode variable structure control MATLAB simulation:basic theory and design method[M].Beijing:Tsinghua University Press,2015.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700