基于Kimura振荡器和虚拟模型的气动肌肉四足机器人步态控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gait Control of Quadruped Robot Driven by Pneumatic Muscle Based on Kimura Oscillator and Virtual Model
  • 作者:张云 ; 郭振武 ; 陈迪剑 ; 王斌锐
  • 英文作者:ZHANG Yun;GUO Zhen-wu;CHEN Di-jian;WANG Bin-rui;College of Mechanical and Electrical Engineering,China Jiliang University;
  • 关键词:四足机器人 ; 中枢模式发生器 ; 气动肌肉 ; 虚拟模型控制 ; 沟壑地形
  • 英文关键词:quadruped robot;;central pattern generator;;pneumatic muscle;;virtual model control;;gully terrain
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:中国计量大学机电工程学院;
  • 出版日期:2018-07-15
  • 出版单位:兵工学报
  • 年:2018
  • 期:v.39;No.256
  • 基金:国家自然科学基金项目(51575503);; 国家重点研发计划项目(2017YFC0804609)
  • 语种:中文;
  • 页:BIGO201807020
  • 页数:8
  • CN:07
  • ISSN:11-2176/TJ
  • 分类号:166-173
摘要
步态控制是四足机器人适应复杂地形的关键,为此对机器人步态进行规划和控制,提出一种步态控制器。针对气动肌肉驱动的四足机器人,根据机器人Denavit-Hartenberg参数建立单腿运动学模型;采用Kimura振荡器设计四足机器人步态的中枢模式发生器(CPG)网络,并改进振荡器输出与关节角度之间的映射关系;采用摆线函数规划机器人足端轨迹,基于生物神经反射机理和虚拟模型控制(VMC),以肢体摆动相位和足端触地信息为状态切换条件,建立沟壑地形自适应步态控制器;搭建Adams与MATLAB联合仿真平台和实物样机测试平台,对步态控制器进行验证。结果表明:改进的CPG步态网络可减小步态参数间的耦合,所生成信号的幅值和相位稳定;基于CPG和VMC的步态控制器能实现机器人对角步态运动,并能跨越宽度为机器人足端宽度的2.50倍沟壑。
        Gait control is the key for quadruped robot adapting to complex terrain,for this purpose,gait controller is proposed for robot gait planning and control. For the quadruped robot driven by pneumatic muscles,the single-leg kinematic model is established based on Denavit-Hartenberg( DH) parameters.Kimura oscillator is used to design the central pattern generator( CPG) network of the quadruped robot gait,and the mapping among oscillator outputs and joint angles is improved. The cycloid function is used to plan the foot-end trajectory. Based on biological neural reflex mechanism and virtual model control( VMC),an adaptive gait controller for gully terrain is presented by taking the swing phase of limbs and the touchdown information of the feet as state switching conditions. Adams and MATLAB co-simulation platform and physical prototype test platform are set up to verify the gait controller. Simulation and experiment show that the improved CPG gait network can reduce the coupling between gait parameters,and the amplitude and phase of the generated signal are stable. The gait control controller based on CPG and VMC can be used to realize the diagonal gait motion of robot and gully crossing with a width of 2. 50 times more than the width of the robot's foot.
引文
[1]朱秋国.浅谈四足机器人的发展历史、现状与未来[J].杭州科技,2017(2):47-50.ZHU Qiu-guo.Discussion on the development,present situation and future of four-legged robots[J].Hangzhou Science and Technology,2017(2):47-50.(in Chinese)
    [2]Ajallooeian M.Pattern generation for rough terrain locomotion with quadrupedal robots[D].Lausanne,Vaud,Switzerland:EPFL,2015.
    [3]Kimura H,Akiyama S,Sakurama K.Realization of dynamic walking and running of the quadruped using neural oscillator[J].Autonomous Robots,1999,7(3):247-258.
    [4]Kimura H,Fukuoka Y,Cohen A H.Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J].International Journal of Robotics Research,2007,26(5):475-490.
    [5]郑浩峻,张秀丽.足式机器人生物控制方法与应用[M].北京:清华大学出版社,2011.ZHENG Hao-jun,ZHANG Xiu-li.Foot robot biologically-inspired motion control theory and its application for a legged-robot[M].Beijing:Tsinghua University Press,2011.(in Chinese)
    [6]Fukuoka Y,Kimura H.Dynamic locomotion of a biomorphic quadruped‘Tekken’robot using various gaits:walk,trot,freegait and bound[J].Applied Bionics and Biomechanics,2009,6(1):63-71.
    [7]Wang Z P,He B,Shen R J,et al.Contact impact inhibition strategy for biped robot walking based on central pattern generator[C]∥Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics.Zhuhai,China:IEEE,2015:733-738.
    [8]Craig J J.Introduction to robotics:mechanics and control[M].Upper Saddle River,NJ,US:Pearson Education,Inc.,2005.
    [9]Ajallooeian M,Pouya S,Sproewitz A,et al.Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion[C]∥Proceedings of 2013 IEEE International Conference on Robotics and Automation.Karlsruhe,Germany:IEEE,2013:3321-3328.
    [10]Zhang G T,Rong X W,Hui C,et al.Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control[J].Advanced Robotics,2016,30(4):284-297.
    [11]Xie H X,Ahmadi M,Shang J Z,et al.An intuitive approach for quadruped robot trotting based on virtual model control[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2015,229(4):342-355.
    [12]Hunt A,Szczecinski N,Quinn R.Development and training of a neural controller for hind leg walking in a dog robot[J].Frontiers in Neurorobotics,2017,11(18):1-16.
    [13]谢惠祥,罗自荣,尚建忠.四足机器人对角小跑动态控制[J].国防科技大学学报,2014,36(4):146-151.XIE Hui-xiang,LUO Zi-rong,SHANG Jian-zhong.Dynamic control for quadrupedal trotting locomotion[J].Journal of National University of Defense Technology,2014,36(4):146-151.(in Chinese)
    [14]Kuhlman M J,Hays J,Sofge D,et al.Stabilizing task-based omnidirectional quadruped locomotion with virtual model control[C]∥Proceedings of 2015 IEEE International Conference on Robotics and Automation.Seattle,WA,US:IEEE,2015:5171-5176.
    [15]Havoutis I,Semini C,Buchli J,et al.Quadrupedal trotting with active compliance[C]∥Proceedings of 2013 IEEE International Conference on Mechatronics.Vicenza,Italy:IEEE,2013:610-616.
    [16]王斌锐,王涛,郭振武,等.气动肌肉四足机器人建模与滑模控制[J].机器人,2017,39(5):620-626.WANG Bin-rui,WANG Tao,GUO Zhen-wu,et al.Modeling and sliding mode control of quadruped robot driven by pneumatic muscles[J].Robot,2017,39(5):620-626.(in Chinese)
    [17]王杨,张强,肖晓晖.基于鲁棒建模的气动人工肌肉驱动仿生关节的轨迹跟踪控制[J].机器人,2016,38(2):248-256.WANG Yang,ZHANG Qiang,XIAO Xiao-hui.Trajectory tracking control of the bionic joint actuated by pneumatic artificial muscleg based on robust modeling[J].Robot,2016,38(2):248-256.(in Chinese)
    [18]王斌锐,沈国阳,金英连,等.基于干扰观测器的级联气动肌肉肘关节滑模控制[J].兵工学报,2017,38(4):793-801.WANG Bin-rui,SHEN Guo-yang,JIN Ying-lian,et al.Sliding mode control of cascade pneumatic muscles of elbow joint based on disturbance observer[J].Acta Armamentarii,2017,38(4):793-801.(in Chinese)
    [19]于海涛,郭伟,谭宏伟,等.基于气动肌腱驱动的拮抗式仿生关节设计与控制[J].机械工程学报,2012,48(17):1-9.YU Hai-tao,GUO Wei,TAN Hong-wei,et al.Design and control on antagonistic bionic joint driven by pneumatic muscles actuators[J].Journal of Mechanical Engineering,2012,48(17):1-9.(in Chinese)
    [20]张国腾,荣学文,李贻斌,等.基于虚拟模型的四足机器人对角小跑步态控制方法[J].机器人,2016,38(1):64-74.ZHANG Guo-teng,RONG Xue-wen,LI Yi-bin,et al.Control of quadruped trotting gait based on virtual model[J].Robot,2016,38(1):64-74.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700