基于光子计数的纠缠微波压缩角锁定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Squeezing angle locking of entangled microwave based on photon counting
  • 作者:魏天丽 ; 吴德伟 ; 杨春燕 ; 罗均文 ; 李响朱 ; 浩男
  • 英文作者:Wei Tian-Li;Wu De-Wei;Yang Chun-Yan;Luo Jun-Wen;Li Xiang;Zhu Hao-Nan;Information and Navigation College, Air Force Engineering University;
  • 关键词:纠缠微波制备 ; 压缩角锁定 ; 微波光子计数 ; 贝叶斯估计
  • 英文关键词:entangled microwave preparation;;squeezing angle locking;;microwave photon counting;;Bayesian estimation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:空军工程大学信息与导航学院;
  • 出版日期:2019-04-22 09:51
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61573372,61603413);; 空军工程大学校长基金(批准号:XZJY2018038)资助的课题~~
  • 语种:中文;
  • 页:WLXB201909006
  • 页数:7
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:61-67
摘要
针对基于超导180°混合环的纠缠微波制备方案探测效率低、信息处理难以及控制复杂等问题,设计了基于微波光子计数的压缩角锁定方案.对超导180°混合环的输出信号进行微波光子计数,通过贝叶斯准则估计输入压缩态微波场的相对压缩角,并将压缩角校正信息反馈于约瑟夫森参量放大器抽运源,调整两路单模压缩态微波场的相对压缩角为180°,达到控制输出纠缠性能最优的目的.该研究为路径纠缠微波的纠缠性能的提升以及高质量纠缠微波源的设计提供了理论参考.
        Quantum entanglement possesses important applications in quantum computation, quantum communication, and quantum precision measurement. It is also an important method to improve the performance of quantum radar and quantum radio navigation. However, the penetration of light wave is poor due to the high frequency, which leads to detecting limitations in bad weather. In this context, quantum entanglement in the microwave domain has been extensively studied, and it is hopeful to overcome the abovementioned defects in quantum optics. Although the entangled microwave preparation of continuous variable is achievable at present, there exist still some problems such as poor entanglement performance, low entanglement efficiency, complex signal processing and control, which restrict the development of entangled microwave sources. In order to improve the entanglement performance in microwave domain, a squeezing-angle locking scheme based on single photon counting is proposed. First, two Josephson parametric amplifiers(JPAs) are driven respectively by two pump signals to generate two single-mode squeezed states which are uncorrelated to each other. Next, the squeezing angle difference between the two single-mode squeezed states is adjusted to180°, and then the two signals are mixed in a superconducting 180° hybrid ring coupler for two entangled microwave outputs. The outputs are single photon detected, and the results are sent to the data processor for solution. The squeezing angle difference between the input single-mode squeezed microwaves is estimated by Bayesian criterion and compared with the target value to calculate the error. Finally, the squeezing angle correction information is fed back into the JPA pump to control the squeezing angle of the single-mode squeezed microwave of the JPA output as well as the relative squeezing angle to reach the target value. Thus,the dual-path entangled microwave with the optimal entanglement performance is output. Comparing with the existing entangled microwave preparation schemes, a single photon counter is utilized in the scheme of this paper, which leads to a detection efficiency of 90%. In addition, the Bayesian criterion is used to estimate the output result, and the theoretical precision reaches the quantum Cramer-Rao lower bound. Meanwhile, the introduced noise level and operation difficulty are reduced, which greatly improves the property of dual-path entangled microwave preparation.
引文
[1] Meschede D, Walther H, Miuller G 1985 Phys. Rev. Lett. 54551
    [2] Yurke B, Kaminsky P G, Miller R E,Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764
    [3] Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012Phys. Rev. Lett. 109 183901
    [4] Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R2012 Phys. Rev. Lett. 109 250502
    [5] Andersen U L, Neergaard-Nielsen J S, van Locck P, Furusawa A 2015 Nat. Phys. 11 713
    [6] Marshall K, Jacobsen C S, Schafermeier C, Gehring T,Weedbrook C, Andersen U L 2016 Nat. Commun. 7 13795
    [7] Sanz M, Las H U, Garcia R, Solano E, Di C R 2017 Phys.Rev. Lett. 118 070803
    [8] Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys. 385 757
    [9] Li X, Wu D W, Wei T L, Miao Q, Zhu H N, Yang C Y 2018AIP Adv. 8 065217
    [10] Fedorov K G, Pogorzalek S, Las Heras U, Sanz M, Yard P,Eder P, Fische M R, Goetz, Xie J E, Inomata K, Nakamura Y, Candia D R, Solano E, Marx A, Deppe F, Gross R 2018Sci. Rep. 8 6416
    [11] Beltran M A C 2010 Ph. D. Dissertation(Colorado:Univer sity of Colorado)
    [12] Ku H S, Kindel W F, Mallet F 2015 Phys. Rev. A 91 042305
    [13] Eichler C, Bozyigit D, Lang C 2011 Phys. Rev. Lett. 107113601
    [14] Zhu H N, Wu D W, Li X, Wang X L, Miao Q, Fang G 2018Acta Phys.Sin. 67 040301(in Chinese)[朱浩男,吴德伟,李响,苗强,方冠2018物理学报67 040301]
    [15] Koshino K, Inomata K, Lin Z, Nakamura Y, Yamamoyo T2015 Phys. Rev. A 91 43805
    [16] Sathyamoorthy S R, Stace T M, Johansson G 2016 C. R.Phys. 17 756
    [17] Koshino K, Lin Z, Inomata K, Yamamoyo T, Nakamura Y2016 Phys. Rev. A 93 23824
    [18] Fan B, Johansson G, Combes J, Mibrun G J, Stace T M 2014Phys. Rev. B 90 035132
    [19] Guo W J 2016 Ph. D. Dissertation(Chengdu:Southwest Jiaotong University)(in Chinese)[郭伟杰2016博士学位论文(成都:西南交通大学)]
    [20] Chen K, Chen S X, Wu D W, Yang C Y, Miao Q 2017 Acta Photon. Sin. 46 0512003
    [21] Yurke B, Mccall S L, Klauder J R 1986 Phys. Rev. A 33 4033
    [22] Zyczkowski K, Horodecki P, Sanpera A, Lewenstein M 1998Phys. Rev. A 58 883
    [23] Viasl G, Werner R F 2002 Phys. Rev. A 65 032314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700