基于灰色关联度理论的钢管支护桩沉桩位移
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Displacement of steel pipe supporting piles based on grey relational theory
  • 作者:时林丰 ; 谢建斌 ; 刘克文 ; 胡井友 ; 林煌超
  • 英文作者:SHI Linfeng;XIE Jianbin;LIU Kewen;HU Jingyou;LIN Huangchao;School of Architecture and Planning,Yunnan University;14 Ye Construction Yunnan Survey and Design Co.Ltd;Kunming Junlong Geotechnical Engineering Co.Ltd;
  • 关键词:钢管支护桩 ; 振动沉桩 ; 正交分析 ; 灰色关联度理论 ; 位移
  • 英文关键词:steel pipe supporting pile;;vibration pile;;orthogonal analysis;;grey relational theory;;displacement
  • 中文刊名:SDKY
  • 英文刊名:Journal of Shandong University of Science and Technology(Natural Science)
  • 机构:云南大学建筑与规划学院;十四冶建设云南勘察设计有限公司;昆明军龙岩土工程有限公司;
  • 出版日期:2019-01-23 14:27
  • 出版单位:山东科技大学学报(自然科学版)
  • 年:2019
  • 期:v.38;No.180
  • 基金:国家自然科学基金项目(11862024,51264037);; 云南大学研究生科研创新基金项目(YDY17090)
  • 语种:中文;
  • 页:SDKY201901004
  • 页数:8
  • CN:01
  • ISSN:37-1357/N
  • 分类号:36-43
摘要
依托深基坑钢管支护桩振动沉桩工程实例,基于三维动力有限元方法,采用数值模拟、正交分析及灰色关联度理论,对影响湖相沉积土层中深基坑钢管支护桩高频振动沉桩位移量的因素进行了敏感性分析,并对钢管支护桩高频振动沉桩的工艺参数进行了优化。研究表明:湖相沉积土层中深基坑钢管支护桩高频振动沉桩过程与土层参数、振动激振力、振动频率和钢管桩桩径等因素关系密切;与钢管支护桩高频振动沉桩位移量关联度的大小依次为振动激振力、振动频率、钢管桩桩径和土体动弹性模量,关联度分别为0.79、0.76、0.74和0.60;湖相沉积土层中深基坑钢管支护桩高频振动沉桩的最佳工艺参数为桩径0.83m、振动激振力1 875kN、振动频率20Hz。
        This study took the engineering project of the steel pipe vibration supporting piles in deep foundation as an example and the three-dimensional dynamic finite element method as the basis.Numerical simulation,orthogonal analysis and grey relational theory were adopted to make a sensitivity analysis of factors that influenced the displacement of high-frequency vibration piles in the deep foundation in lacustrine sedimentary layers.The parameters of high frequency vibration steel piles were optimized.The results show that the steel piles of deep foundation in lacustrine sedimentary soil are closely related to soil parameters,exciting force,vibration frequency and steel pipe pile diameter.The exciting force,vibration frequency,steel pipe pile diameter and dynamic elastic modulus are in turn related to the displacement of high frequency vibrating pile of steel,with the correlation degree being 0.79,0.76,0.74 and 0.60 respectively.The optimal parameters of high-frequency vibration pile sinking are 0.83 min diameter,1 875 kN in exciting force and 20 Hz in vibration frequency in the lacustrine sedimentary soil.
引文
[1]陈岱杰,陈龙珠,郑建国.高频振动打桩机理的试验研究[J].铁道建筑,2006(7):49-51.CHEN Daijie,CHEN Longzhu,ZHENG Jianguo.Expermiental study on mechanism of piling with high-frequency vibration[J].Railway Engineering,2006(7):49-51.
    [2]陈福全,雷金山,汪金卫.高频液压振动锤沉桩的打入性状分析[J].铁道科学与工程学报,2009,6(1):41-47.CHEN Fuquan,LEI Jinshan,WANG Jinwei.Penetration behaviour due to vibratory pile driving using the high frequency hydraulic vibratory hammer[J].Journal of Railway Science and Engineering,2009,6(1):41-47.
    [3]陈福全,汪金卫.高频液压振动锤沉桩引起的孔压增长性状分析[J].铁道科学与工程学报,2010,7(1):21-27.CHEN Fuquan,WANG Jinwei.Behaviour analysis of excess pore pressure due to vibratory pile driving using the high frequency hydraulic vibratory hammer[J].Journal of Railway Science and Engineering,2010,7(1):21-27.
    [4]韩钧,陈福全,曹琪君.高频液压振动沉桩的颗粒离散元分析[J].福州大学学报(自然科学版),2011,39(2):287-292.HAN Jun,CHEN Fuquan,CAO Qijun.DEM study on the installation of a pile using the high-frequency hydraulic vibratory hammer[J].Journal of Fuzhou University(Natural Science),2011,39(2):287-292.
    [5]王学红.高频液压振动锤沉桩机理的颗粒离散元模拟[D].福州:福州大学,2011.
    [6]罗春雷,贺建超,丁吉,等.振动桩锤沉桩过程液化特性和贯入度数值分析[J].广西大学学报(自然科学版),2011,36(6):923-929.LUO Chunlei,HE Jianchao,DING Ji,et al.Numerical analysis on liquefaction properties and driving penetration of vibratory pile[J].Journal of Guangxi University(Natural Science),2011,36(6):923-929.
    [7]李小彭,段泽亮,李涛,等.振动沉桩过程的动力学仿真分析[J].振动与冲击,2012,31(7):24-26.LI Xiaopeng,DUAN Zeliang,LI Tao,et al.Dynamic simulation of a vibratory pile driving process[J].Journal of Vibration and Shock,2012,31(7):24-26.
    [8]李小彭,赵光辉,鞠行,等.基于AMESim的振动沉桩系统的动力学仿真分析[J].东北大学学报(自然科学版),2013,34(5):683-686.LI Xiaopeng,ZHAO Guanghui,JU Xing,et al.Dynamic simulation analysis of the vibratory sinking pile system based on AMESim[J].Journal of Northeastern University(Natural Science),2013,34(5):683-686.
    [9]李小彭,赵光辉,梁亚敏,等.旋转阀式液压振动沉拔桩机实验系统特性分析[J].振动与冲击,2014,33(21):90-95.LI Xiaopeng,ZHAO Guanghui,LIANG Yamin,et al.Dynamic characteristics of a test system for a hydraulic vibratory piling machine with a rotary valve[J].Journal of Vibration and Shock,2014,33(21):90-95.
    [10]张楠,邱燕超,张学良,等.软式非线性同步振动沉桩系统的动力学分析[J].振动.测试与诊断,2017,37(2):320-325.ZHANG Nan,QIU Yanchao,ZHANG Xueliang,et al.Dynamic analysis of a flexible nonlinear synchronous vibration pile system[J].Journal of Vibration,Measurement&Diagnosis,2017,37(2):320-325.
    [11]肖勇杰,陈福全,董译之.基于Gudehus-Bauer模型的砂土中灌注桩护壁套管高频振动贯入速率[J].岩土力学,2018,39(8):3011-3019.XIAO Yongjie,CHEN Fuquan,DONG Zezhi.Penetration speed of sleeve for cast-in-place pile installed in sand by high frequency vibratory hammers using Gudehus-Bauer hypoplastic model[J].Rock and Soil Mechanics,2018,39(8):3011-3019.
    [12]O’NEIL M W,VIPULANANDAN C,WONG D O.Laboratory modeling of vibro-driven piles[J].Journal of Geotechnical Engineering,ASCE,1990,116(8):1190-1209.
    [13]VIKING K.Vibro-driveability,a field study of vibratory driven sheet piles in non-cohesive soils[D].Stockholm:Royal Institute of Technology,2002.
    [14]罗春雷.液压振动桩锤沉桩动力学及调频调矩控制研究[D].长沙:中南大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700