用户名: 密码: 验证码:
微通道管路中硫酸钡沉积动力学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Depositional Kinetics on Barium Sulfate Scaling in Microchannel Pipeline
  • 作者:张宝丹 ; 杨贝 ; 靳海波 ; 杨索和 ; 何广湘 ; 郭晓燕
  • 英文作者:ZHANG Baodan;YANG Bei;JIN Haibo;YANG Suohe;HE Guangxiang;GUO Xiaoyan;School of Chemical Engineering,Beijing Institute of Petrochemical Technology,Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology;China Metallurgical Engineering Technology Cor.Ltd;College of Chemical Engineering,Northwest University;
  • 关键词:微通道管路 ; 硫酸钡 ; 动力学 ; 沉积模型
  • 英文关键词:microchannel pipeline;;barium sulfate;;kinetics;;deposition model
  • 中文刊名:YJHX
  • 英文刊名:Oilfield Chemistry
  • 机构:北京石油化工学院化学工程学院燃料清洁化及高效催化减排技术北京市重点实验室;中冶京诚工程技术有限公司;西北大学化学工程学院;
  • 出版日期:2018-06-25
  • 出版单位:油田化学
  • 年:2018
  • 期:v.35;No.136
  • 基金:国家自然科学基金“加压大型鼓泡塔中气泡群介尺度流动结构与传质特性的构效关系”(项目编号91634101);; 北京市属高校高水平教师队伍建设支持计划-高水平创新团队建设计划“基于过程绿色化的界面调控传质与高效催化反应技术”(项目编号IDHT20180508)
  • 语种:中文;
  • 页:YJHX201802028
  • 页数:7
  • CN:02
  • ISSN:51-1292/TE
  • 分类号:153-159
摘要
为研究油田注水系统管道中硫酸钡垢的沉积行为,采用压差法和火焰原子吸收分光光度法对微通道管路中硫酸钡的沉积过程进行测定分析,建立了相关的沉积动力学模型,考察了不同因素对反应动力学系数(ka)和管路沉积系数(β)的影响。结果表明,ka和β随反应的进行逐渐增大。当管路增长、流量增大、BaCl_2和Na_2SO_4初始浓度增加时,ka增大;β随着管路增长和流量增大呈非线性增加,随浓度增大线性增加。温度升高,β增幅增加,ka在反应初期无明显变化,在反应后期增加。根据实验数据拟合得到ka和β的相应关联式,由此计算得到的相应值与实验测量值大致相符;由简化的硫酸钡沉积动力学模型计算的管路出口钡含量与实验测量值基本吻合,说明基于假设前提下建立的硫酸钡沉积动力学模型是合理的。
        In order to study the deposition behavior of barium sulfate scale in pipelines of oilfield water injection system,the deposition process of barium sulfate in microchannel pipelines was measured and analyzed by differential pressure method and flame atomic absorption spectrophotometry,and a related depositional dynamics model was established. The influence of different factors on the reaction kinetic coefficient(ka)and the pipeline deposition coefficient(β)was investigated. The results showed that ka and β gradually increased with the reaction. It indicated that ka increased with increasing pipeline,flow rate,and initial concentration of Ba Cl2 and Na2 SO4. β had a nonlinear increase with increasing pipeline and flow rate,and had a linear increase with increasing concentration. With the increase of temperature,the increment of β increased. While ka did not change significantly in the early stage of the reaction and increased in the later period of the reaction. Equations of ka and β were obtained by fitting the experimental data,and the corresponding calculated values were roughly in accordance with experimental measurements. The concentration of barium at the exit of pipeline calculated from established simplified model was basically consistent with experimental measurements,which illustrated that it was reasonable to explain the deposition kinetics model of barium sulfate reaction system based on assumptions.
引文
[1]BUKUAGHANGIN O,SANNI O,KAPUR N,et al.Kinetics studyof barium sulphate surface scaling and inhibition with a oncethrough flow system[J].J Petrol Sci Eng,2016,147:699-706.
    [2]BINMERDHAH A B,YASSIN A A M,MUHEREI M A.Laboratory and prediction of barium sulfate scaling at highbarium formation water[J].J Petrol Sci Eng,2010,70(1/2):79-88.
    [3]范洪福,曹晓春,刘文,等.油田应用化学[M].哈尔滨:哈尔滨工业大学出版社,2003:101-107.
    [4]熊玉娟,唐善法,邹玮.硫酸盐垢聚合物阻垢剂研究进展[J].石油化工腐蚀与防护,2012,29(2):8-11.
    [5]杨肖曦,赵磊,张丁涌,等.注水井井筒中碳酸钙结垢预测[J].中国石油大学学报(自然科学版),2010,34(1):114-117.
    [6]曹宗仑,陈进富,何绍群,等.高矿化度油田采出水中的碳酸钙结垢动力学[J].中国石油大学学报(自然科学版),2008,32(4):132-135.
    [7]KHORMALI A,PETRAKOV D G,MOEIN M J A.Experimental analysis of calcium carbonate scale formation and inhibition in waterflooding of carbonate reservoirs[J].J Petrol Sci Eng,2016,147:843-850.
    [8]HOANG T A,ANG H M,ROHL A L.Effects of temperature on the scaling of calcium sulphate in pipes[J].Powder Technol,2007,179(1):31-37.
    [9]杨欢,罗跃,苑慧莹,等.油田集输管道内流动流体结垢动力学研究[J].油田化学,2016,33(2):351-356.
    [10]TODD A C,YUAN M D.Barium and strontium sulfate solid-solution scale formation at elevated temperatures[J].SPE Prod Oper,1992,7(1):85-92.
    [11]BAYONA G H.A Review of well injectivity performance in Saudi Arabia’s Ghawar Field seawater injection program[J].SPE Prod Oper,1993,31(2):201-207.
    [12]PIEPER M,AMAN S,TOMAS J.Agglomeration kinetics of submicron barium sulfate precipitates[J].Chem Eng Sci,2012,77:228-234.
    [13]YANG Bei,ZHANG Xiang,SHI Xinge,et al.Study in kinetics of barium sulfate crystallization process of oilfield injection[J].Adv Mater Res,2014,962-965:757-761.
    [14]JIN Haibo,YANG Bei,YANG Suohe,et al.An experimental and modeling study of barite deposition in one-dimensional tubes[J].J Petrol Sci Eng,2015,125:107-116.
    [15]李洪建,陈满,石祥超,等.基于化学动力学的地层硫酸钡结垢模型研究[J].西南石油大学学报(自然科学版),2016,38(4):143-148.
    [16]李洪建,余先政,周文静,等.硫酸钡结垢动力学瞬态模型研究[J].西南石油大学学报(自然科学版),2017,39(5):178-184.
    [17]蒋伟,郑云萍,司先锋,等.油田水结垢预测研究综述[J].特种油气藏,2006,13(5):15-18.
    [18]SCHINO D A,KENNY J M,ABBRUZZESE G.Analysis of the recrystallization and grain growth processes in AISI 316stainless steel[J].J Mater Sci,2002,37(24):5291-5298.
    [19]张博丽.火焰原子吸收光谱法测定硫酸钡中的游离钡[J].无机盐工业,2012,44(2):60-61.
    [20]杨贝,赵月龙,焦玉海,等.富氧天然气火焰原子吸收光谱法测定油田水中的钡含量[J].石油化工,2013,42(12):1393-1397.
    [21]朱炳辰.化学反应工程[M].北京:化学工业出版社,2014:19-23.
    [22]柴诚敬.化工原理(上册)[M].北京:高等教育出版社,2010:40-44.
    [23]靳海波,杨贝,杨索和,等.油田注水系统中毛细管内硫酸钡结垢动力学分析[J].中国石油大学学报(自然科学版),2015,39(5):157-163.
    [24]钱惠娟,朱明亮,罗忠贵,等.油田硫酸钡结垢过程影响因素研究[J].油气田环境保护,2017,36(8):89-92.
    [25]李雪娇.硫酸钡结垢影响因素及化学阻垢实验研究[D].成都:西南石油大学,2015:33-35.
    [26]MAVREDAKI E,NEVILLE A,SORBIE K S.Initial stages of barium sulfate formation at surfaces in the presence of inhibitors[J].Cryst Growth Des,2011,11(11):4751-4758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700