黄河下游河道断面沉积速率的时段变化及其原因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Change of the Sedimentation Rate on the Channel Cross-sections in the Lower Reaches of Yellow River and Its Influence Factors
  • 作者:刘慰 ; 王随继
  • 英文作者:LIU Wei;WANG Suiji;Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS;University of Chinese Academy of Sciences;
  • 关键词:黄河下游 ; 河道断面 ; 沉积速率 ; 时空变化
  • 英文关键词:lower reaches of Yellow River;;channel cross-sections;;sedimentation rate;;temporal and spatial change
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室;中国科学院大学;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.133
  • 基金:国家重点研发计划项目(2016YFC0402503);; 自然科学科学基金(41571005,41271027)
  • 语种:中文;
  • 页:STBY201902027
  • 页数:8
  • CN:02
  • ISSN:61-1272/P
  • 分类号:171-178
摘要
黄河中游的大量来沙导致其下游河道沉积升高而变成了悬河,成了防洪的潜在威胁。为了揭示半个世纪以来黄河下游的沉积态势及其沉积速率的时空变化,选取了黄河下游花园口、高村、洛口、利津4个典型水文站1960年以来的水沙和河道断面的实测资料,分析了水沙变化趋势,计算了不同时段河道断面河床沉积速率。结果表明:上述4个断面的沉积速率在时间上都有明显的减小趋势,这与流域逐渐增强的水土保持措施、水库调节和引水相关,而由于水库运行方式的不同,其中部分时段呈现较大的侵蚀速率,尤其自2010年以来侵蚀态势更为明显。断面河床沉积速率在空间上自高村以下呈现出沿程增大趋势,从沿程分布的辫状、弯曲和顺直3类河型来看,1960年以来的平均沉积速率在辫状和弯曲河段相近,而顺直河段最大,这主要与河道比降逐渐变小而引起的水动力变弱有关。为了持续降低黄河下游的沉积速率,中上游水土保持措施的持续实施和小浪底水库有计划的清水冲沙仍然是未来黄河下游河道治理的最好选择。
        The large amount of sediments delivered from the middle reaches of Yellow River Basin to the lower reaches has resulted in that the riverbed in lower reach is higher than ground and the lower reaches of Yellow River became a ‘hanging river', which is a potential threat to flood control. In order to reveal the sedimentation trend in the channel of the lower reaches of Yellow River, we calculated the sedimentation rates on the channel cross-sections of Huayuankou, Gaocun, Luokou, and Lijin gauging stations in the lower reaches of Yellow River based on the measured data since 1960, and analyzed the temporal and spatial change of the sedimentation rates. The results showed that the sedimentation rate of the above cross-sections decreased obviously in different time periods, which is related to the vigorous implementation of soil-and-water conservation measures, regulation of reservoirs, and water diversion in the basin. Due to the different operation strategies of reservoirs, the erosion rate during partial periods was relatively large, especially since 2010. The spatial evolution of the sedimentation rate of channel bed showed an increasing trend in the lower reaches passing the Gaocun station. In terms of braided, meandering, and straight three channel patterns along the lower reaches of Yellow River, the sedimentation rate of the braided channel is similar to that of the meandering channel, while that of the straight channel reach is the largest among the three channel patterns. This spatial variation trend is mainly related to the weakened flow power caused by the gradual reduction of the channel gradient. For the sake of a sustainable reduction in the sedimentation rate of the lower reaches of Yellow River, the continuous implementation of soil-and-water conservation measures in the middle and upper reaches and the planned water flushing of Xiaolangdi Reservoir are still the best choices for the lower Yellow River management in the future.
引文
[1]王随继.黄河流域河型转化现象初探[J].地理科学进展,2008,27(2):10-17.
    [2]倪晋仁.不同边界条件下河型成因的试验研究[D].北京:清华大学,1989.
    [3]倪晋仁,王随继.现代冲积河流的河型空间转化模式探讨[J].沉积学报,2000,18(1):1-6.
    [4]王随继.黄河下游不同河型河道的水沙效应及演变趋势分析[J].沉积学报,2009,27(6):1163-1171.
    [5]Liébault F, Piégay H. Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France[J]. Geomorphology, 2001,36(3/4):167-186.
    [6]许炯心,师长兴.汉江丹江口水库下游游荡段河岸侵蚀及其在河床调整中的意义[J].科学通报,1995,40(18):1689-1692.
    [7]Pohl M. Channel bed mobility downstream from the Elwha Dams, Washington[J]. Professional Geographer, 2004,56(3):422-431.
    [8]冉立山,王随继,范小黎,等.黄河内蒙古头道拐断面形态变化及其对水沙的响应[J].地理学报,2009,64(5):531-540.
    [9]范小黎,王随继,冉立山.黄河宁夏河段河道演变及其影响因素分析[J].水资源与水工程学报,2010,21(1):5-11.
    [10]冯普林,梁志勇,黄金池,等.黄河下游河槽形态演变与水沙关系研究[J].泥沙研究,2005(2):66-74.
    [11]姚文艺,常温花,夏修杰.黄河下游游荡性河段清水下泄期河道断面形态的调整过程[J].水利学报,2003,34(10):75-80.
    [12]Shi C, Zhang D. Processes and mechanisms of dynamic channel adjustment to delta progradation: the case of the mouth channel of the Yellow River, China[J]. Earth Surface Processes & Landforms, 2003,28(6):609-624.
    [13]朱起茂.黄河下游河床演变与河口淤积延伸[J].地理研究,1982,1(4):17-25.
    [14]王随继.黄河下游河型的特性及成因探讨[J].地球学报,2003,24(1):73-78.
    [15]陆中臣,陈劭锋,陈浩.黄河下游游荡段河道平面形态与河势变化趋势预测[J].地理学报,2000,55(6):729-736.
    [16]戴英生.黄河的形成与发育简史[J].人民黄河,1983(6):4-9.
    [17]黄河水利委员会.黄河流域水文资料[Z].北京:黄河水利委员会,1961—1989,2006—2014.
    [18]Leopold L B, Maddock R T. The hydraulic geometry of stream channels and some physiographic implications[J]. Usgs Professional Paper, 1953,252.
    [19]王兆印,周静,李昌志.黄河下游水沙变化及河床纵横断面的演变[J].水力发电学报,2006,25(5):42-45.
    [20]王随继.黄河下游辫状、弯曲和顺直河段间沉积动力特征比较[J].沉积学报,2010,28(2):307-313.
    [21]王随继,任明达.根据河道形态和沉积物特征的河流新分类[J].沉积学报,1999,17(2):240-246.
    [22]顾永杰.试析三门峡工程中的“蓄水拦沙”方针[J].咸阳师范学院学报,2010,25(6):91-95.
    [23]张敏.黄河下游河道横断面形态演变特点及调整规律探讨[D].太原:太原理工大学,2006.
    [24]钱宁,张仁,周志德.河床演变学[M].北京:科学出版社,1987.
    [25]赵业安,潘贤娣.黄河水沙变化与下游河道发展趋势[J].人民黄河,1994(2):31-34.
    [26]陈建国,周文浩,孙高虎.论黄河小浪底水库拦沙后期的运用及水沙调控[J].泥沙研究,2016(4):1-8.
    [27]黄河水利委员会.黄河流域水土保持公报[R].北京:黄河水利委员会,1999—2015.
    [28]信忠保,余新晓,甘敬,等.黄河中游河龙区间植被覆盖变化与径流输沙关系研究[J].北京林业大学学报,2009,31(5):1-7.
    [29]米玉良,樊军玲.退耕还林对黄河中游河流含沙量和输沙量的影响[J].陕西水利,2013(4):127-129.
    [30]周静.黄河下游近30年河道演变规律研究[D].北京:清华大学,2005.
    [31]姚文艺,彭乃志,杨道富.水土保持治理对河道系统影响研究的若干基础理论问题[J].泥沙研究,1999(4):20-25.
    [32]王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报,2005,20(2):157-162.
    [33]黄河水利委员会.黄河水资源公报[R].北京:黄河水利委员会,2001—2014.
    [34]张俊峰,张学成,张新海.黄河流域水资源量调查评价[J].人民黄河,2011,33(11):39-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700