硫化氢环境下常用油井管材质腐蚀规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Rules of Commonly Used Oil Well Pipes in Hydrogen Sulfide Environment
  • 作者:何松 ; 邢希金 ; 刘书杰 ; 殷启帅 ; 耿亚楠 ; 冯桓榰 ; 赵秋璇
  • 英文作者:HE Song;XING Xi-jin;LIU Shu-jie;YIN Qi-shuai;GENG Ya-nan;FENG Huan-zhi;ZHAO Qiu-xuan;CNOOC Research Institute Limited Liability Company;China University of Petroleum;
  • 关键词:海上油气田 ; 管材 ; 防腐 ; 腐蚀速率 ; 均匀腐蚀 ; 点蚀
  • 英文关键词:offshore oil and gas fields;;pipes;;corrosion protection;;corrosion rate;;uniform corrosion;;pitting corrosion
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中海油研究总院有限责任公司;中国石油大学;
  • 出版日期:2018-12-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 基金:国家科技重大专项(2017ZX05032-004);; 国家自然科学基金(51774301,51434009)~~
  • 语种:中文;
  • 页:BMJS201812004
  • 页数:7
  • CN:12
  • ISSN:50-1083/TG
  • 分类号:26-32
摘要
目的通过失重法测定L80、N80、1Cr、3Cr、9Cr、13Cr等油井管材质在硫化氢分压为0.001、0.01、0.1、0.5、1.26、2 MPa环境条件下的腐蚀速率。方法采用高温高压反应釜对L80、N80、1Cr、3Cr、9Cr、13Cr等材料在模拟工况下的腐蚀行为进行研究。用扫描电子显微镜对所得样品的腐蚀产物种类、微观形貌进行分析。结果在硫化氢分压为2 MPa以下时,各种材料的腐蚀速率均低于0.125 mm/a,属于中度腐蚀。而硫化氢分压为2MPa时,除9Cr外,其余材料的腐蚀速率均达到了重度腐蚀以上。不锈钢的腐蚀速率要明显低于低合金钢,且加入少量Cr元素并未对耐蚀性能有显著的提升,且某些条件下,腐蚀速率要高于普通低合金钢。对于低合金钢及含Cr量较低的钢,硫化氢压力不高于0.1 MPa时,腐蚀速率差异不大,基本保持在0.025 mm/a附近,属于轻微腐蚀,但当硫化氢压力达到0.5 MPa时,L80、N80和1Cr的腐蚀速率显著增高。在硫化氢分压0.001~0.1 MPa之间,常用油井管材质的点蚀严重程度随硫化氢分压增大而逐渐增加;在硫化氢分压0.1~0.5 MPa之间,常用油井管材质点蚀程度随硫化氢分压增大而逐渐降低;在0.5~2 MPa之间,点蚀程度又逐渐增加。结论对于不锈钢,当硫化氢压力不高于0.1 MPa时,虽然腐蚀速率随硫化氢压力升高,呈现一定的上升趋势,但腐蚀速率均维持在较低的水平;当硫化氢压力达到0.5 MPa时,不锈钢的腐蚀速率显著增大。不锈钢的耐蚀性能要远优于低合金钢,尤其是在硫化氢压力较低的环境中。
        The work aims to measure the corrosion rates of L80, N80, 1 Cr, 3 Cr, 9 Cr and 13 Cr oil well pipes under the conditions of hydrogen sulfide partial pressure of 0.001, 0.01, 0.1, 0.5, 1.26 and 2 MPa by the method of weight loss. The corrosion behavior of L80, N80, 1 Cr, 3 Cr, 9 Cr, 13 Cr and other materials under simulated conditions was studied by high temperature and high pressure reactor. Scanning electron microscope(SEM) was used to analyze the types and microstructure of corrosion prod-ucts. The corrosion rate of all materials was lower than 0.125 mm/a when the partial pressure of hydrogen sulfide was less than 2 MPa, so the corrosion was moderate. When the partial pressure of hydrogen sulfide was 2 MPa, the corrosion rate of all the materials except 9 Cr was higher than that of severe corrosion. The corrosion rate of stainless steel was significantly lower than that of low alloy steel, and addition of a small amount of Cr element could not significantly improve the corrosion resistance. Under certain conditions, the corrosion rate was higher than that of ordinary low alloy steels. For low alloy steel and low Cr steel, the corrosion rate was not much different when the hydrogen sulfide pressure was not higher than 0.1 MPa, and the corrosion rate was basically kept near 0.025 mm/a, so the corrosion was slight. However, when the hydrogen sulfide pressure reached 0.5 MPa, the corrosion rates of L80, N80 and 1 Cr increased significantly. The severity of pitting on commonly used oil well pipes gradually increased with the increase of partial pressure of hydrogen sulfide when the partial pressure of hydrogen sulfide was from 0.001~0.1 MPa. When the partial pressure of hydrogen sulfide was 0.1~0.5 MPa, the pitting degree of commonly used oil well pipes decreased with the increase of partial pressure of hydrogen sulfide. The degree of pitting gradually increased again when the partial pressure of hydrogen sulfide was from 0.5~2 MPa. For stainless steel, when hydrogen sulfide pressure is not higher than 0.1 MPa, the corrosion rate of stainless steel increases with the increase of hydrogen sulfide pressure, but the corrosion rate remains at a low level. When the hydrogen sulfide pressure reaches 0.5 MPa, the corrosion rate of stainless steel increases significantly. The corrosion resistance of stainless steel is much better than that of low alloy steel, especially in the environment of low hydrogen sulfide pressure.
引文
[1]谢涛,林海,许杰,等.不同材质油套管钢的CO2腐蚀行为[J].表面技术,2017,46(1):211-217.XIE Tao,LIN Hai,XU Jie,et al.CO2 corrosion behavior of oil casing steel made from different materials[J].Surface technology,2017,46(1):211-217.
    [2]刘阳,王啸,许杰,等.渤海凝析油气藏探井转开发井防腐技术研究[J].表面技术,2018,47(10):249-255.LIU Yang,WANG Xiao,XU Jie,et al.Anti-corrosion techniques for transition from exploration well to development well in condensate reservoirs in Bohai sea[J].Surface technology,2018,47(10):249-255.
    [3]闫伟,邓金根,邓福成,等.油套管力学-化学腐蚀规律分析[J].中国海上油气,2014,26(1):87-91.YAN Wei,DENG Jin-gen,DENG Fu-cheng,et al.Discus-sion of mechanical-chemical corrosion in OCTGanti-corrosion design[J].China offshore oil and gas,2014,26(1):87-91.
    [4]陈长风,路民旭,赵国仙,等.油套管CO2腐蚀产物膜的力学性能[J].金属学报,2003,39(2):175-181.CHEN Chang-feng,LU Min-xu,ZHAO Guo-xian,et al.mechanical properties of CO2 corrosion scale on N80 well tube steel[J].Acta metallurgica sinica,2003,39(2):175-181.
    [5]张超,张智,曾春珉,等.涠洲-11-4油田含CO2气井油管柱腐蚀分析[J].中国海上油气,2015,27(4):122-125.ZHANG Chao,ZHANG Zhi,ZENG Chun-min,et al.Analysis on tubing corrosion for gas wells with CO2 in WZ 11-4 oilfield[J].China offshore oil and gas,2015,27(4):122-125.
    [6]CAI Y D,GUO P C,LIU D M,et al.Comparative study on CO2 orrosion behavior of N80,P110,X52 and 13Cr pipe lines in simulated stratum water[J].Sci China technol sci,2010,53:2342-2349.
    [7]VEDAGE H,RAMANARAYANAN T A,MUMFORD JD,et al.Electro-chemical growth of iron sulfide films in H2S-saturated chloride media[J].Corrosion,1993,49(2):114-121.
    [8]DURNIE W,MARCO R D,JEFFERSON A,et al.Harmonic analysis of carbon dioxide corrosion[J].Corrosion science,2002,44(6):1213-1221.
    [9]TAKABE H,UEDA M.The relationship between CO2corrosion resistance and corrosion products structure on carbon and low Cr bearing steels[J].Zairyo-to-kankyo,2007,56(11):514-520.
    [10]SERRA E,PERUJO A,GLASBRENNER H.Hot-dip aluminium deposit as a permeation barrier for MANETsteel[J].Fusion engineering&design,1998,41(1-4):149-155.
    [11]董晓焕,赵国仙,冯耀荣,等.13Cr不锈钢的CO2腐蚀行为研究[J].石油矿场机械,2003,32(6):2-3.DONG Xiao-huan,ZHAO Guo-xian,FENG Yao-rong,et al.Study of CO2 corrosion behavior of 13Cr steel[J].Oil field equipment,2003,32(6):2-3.
    [12]MISHRA B,ALHASSAN S,OLSON D L,et al.Development of a predictive model for activation-controlled corrosion of steel in solutions containing carbon dioxide[J].Corrosion,1997,53(11):852-859.
    [13]WANG C,NEVILLE A.Study of the effect of inhibitors on erosion-corrosion in CO2-saturated condition with sand[J].Spe projects facilities&construction,2009,4(1):1-10.
    [14]林玉华,杜荣归,胡融刚,等.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报,2005(7):53-57.LIN Yu-hua,DU Rong-gui,HU Rong-gang,et al.A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel[J].Journal of physical chemistry,2005(7):53-57.
    [15]吕详鸿,赵国仙,张建兵,等.超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J].北京科技大学学报,2010,32(2):207-212.LYU Xiang-hong,ZHAO Guo-xian,ZHANG Jian-bing,et al.Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J].Journal of Beijing University of Science and Technology,2010,32(2):207-212.
    [16]MALKA R,NESIC S,GULINO D A.Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J].Wear,2007,262:791-799.
    [17]UEDA M,TAKABE H.The formation behavior of corrosion protective films of low Cr bearing steels in CO2 environments[J].Annals of surgery,2001,244(5):700-705.
    [18]UEDA M,TAKABE H,NICE P I.The development and implementation of a new alloyed steel for oil and gas production wells[J].Free radical biology&medicine,2000,43(3):431-443.
    [19]PLACE M C.Corrosion inhibition for severely corrosive gas wells[J].Corrosion,2012,48(4):341-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700