不同强度冷空气对太湖水热交换的定量影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantifying the effects of different cold air events on latent and sensible heat fluxes of Lake Taihu
  • 作者:刘强 ; 王伟 ; 肖薇 ; 荆思佳 ; 张弥 ; 胡勇博 ; 张圳 ; 谢燕红
  • 英文作者:LIU Qiang;WANG Wei;XIAO Wei;JING Sijia;ZHANG Mi;HU Yongbo;ZHANG Zhen;XIE Yanhong;Yale-NUIST Center on Atmospheric Environment,Nanjing University of Information Science and Technology;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology,Nanjing University of Information Science and Technology;NUIST-Wuxi Research Institute;Binjiang College of NUIST;
  • 关键词:太湖 ; 潜热通量 ; 感热通量 ; 冷空气事件 ; 控制因子
  • 英文关键词:Lake Taihu;;latent heat flux;;sensible heat flux;;cold air events;;controlling factors
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:耶鲁大学-南京信息工程大学大气环境中心;南京信息工程大学气象灾害预报预警与评估协同创新中心/江苏省农业气象重点实验室;南京信息工程大学无锡研究院;南京信息工程大学滨江学院;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41505005,41475141,41575147);; 江苏省自然科学基金青年项目(BK20150900)联合资助
  • 语种:中文;
  • 页:FLKX201904024
  • 页数:13
  • CN:04
  • ISSN:32-1331/P
  • 分类号:256-268
摘要
作为冷季主要的天气事件,冷空气过境会改变湖泊上方的气团性质,对湖泊的水热通量产生影响,进而影响湖泊的生物物理和化学过程.以亚热带大型浅水湖泊——太湖为研究对象,基于2012-2017年5个冷季(11月-翌年3月)的太湖中尺度通量网观测数据,量化不同强度冷空气(寒潮、强冷空气和较强冷空气)对太湖水热通量的影响.结果表明:在5个冷季中,寒潮、强冷空气和较强冷空气发生的总次数分别为4、11和33次,累积持续天数分别为14、31和78天.冷空气过境显著增强太湖的水热通量,3种冷空气过境使太湖的感热通量分别增至无冷空气时的10.3、6.0和4.3倍,潜热通量分别增至无冷空气时的4.0、2.1和2.7倍.虽然冷空气影响天数仅占冷季天数的16.4%,但对整个冷季的潜热和感热通量贡献分别为34.9%和51.7%,以较强冷空气贡献最大.冷空气影响时,水-气界面的温度梯度是太湖感热通量的主控因子,而潜热通量的主控因子为风速.与深水湖泊相比,太湖等浅水湖泊对冷空气过境的响应更快,寒潮过境时尤为明显.
        As the major synoptic system,cold air events influence the water vapor and heat exchanges between lake and atmosphere by changing the meteorological conditions of air masses over the lake. Then biophysical and biogeochemical cycles in the lake ecosystem would be moderated by cold air passage. Based on dataset of the Taihu Eddy Flux Network observed during the five cool seasons( 2012-2017),the effects of different cold air events( cold wave,severe cold air events and strong cold air events) on latent and sensible heat fluxes were quantified on the large subtropical shallow Lake Taihu. The results showed that cold wave,severe cold air events and strong cold air events totally happened 4,11 and 33 times,and lasted for 14,31 and 78 days,respectively.The sensible and latent heat exchanges between lake and atmosphere were accelerated significantly by the passage of cold air. The sensible heat flux increased by 10.3,6.0 and 4.3 times during cold wave,severe cold air events and strong cold air events,respectively. The latent heat flux was increased by 4.0,2.1 and 2.7 times,respectively. Although cold air passage only occupied 16.4%of entire cool season,the cold air events contributed 34.9% and 51.7% of the total latent and sensible heat fluxes,respectively.Moreover,the strong cold air events were the biggest contributor. During cold air events,the temperature gradient between the air and water is the most significant factor governing the sensible heat exchange rate. While,the latent heat flux is mostly dominated by wind speed. Compared to deep lakes,shallow lakes response faster to cold air activities. Therefore,the latent and sensible heat fluxes of shallow lakes increase much more,especially during cold waves.
引文
[1] Dutra E,Stepanenko VM,Balsamp G et al. An offline study of the impact of lakes on the performance of the ECM-WF surface scheme. Boreal Environment Research,2010,15(2):100-112.
    [2] Long Z,Perrie W,Gyakum J et al. Northern lake impacts on local seasonal climate. Journal of Hydrometeorology,2007,8(4):881-896. DOI:10.1175/JHM591.1.
    [3] Lofgren BM. Simulated effects of idealized laurentian Great Lakes on regional and large-scale climate. Journal of Climate,1996,10(11):2847-2858. DOI:10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO; 2.
    [4] Bonan GB. Sensitivity of a GCM simulation to inclusion of inland water surfaces. Journal of Chemical Ecology,1995,8(11):2691-2704.
    [5] Mackay MD,Neale PJ,Arp CD et al. Modeling lakes and reservoirs in the climate system. Limnology and Oceanography,2009,54(6):2315-2329. DOI:10.4319/lo.2009.54.6_part_2.2315.
    [6] Leavitt PR,Fritz SC,Anderson NJ et al. Paleolimnological evidence of the effects on lakes of energy and mass trans-fer from climate and humans. Limnology and Oceanography,2009,54(6PART2):2330-2348. DOI:10.4319/lo.2009.54.6_part_2.2330.
    [7] Steeburgh WJ,Onton DJ. Multiscale analysis of the 7 December 1998 Great Salt Lake-Effect snowstorm. Monthly Weather Review,2001,129(6):1296-1317. DOI:10.1175/1520-0493(2001)129<1296:MAROTDG>2.0.CO; 2.
    [8] Sousounis PJ,Shirer HN. Lake-aggregate mesoscale disturbances. Part I:Linear analysis. Journal of the Atmospheric Sciences,1992,49(1):80-100. DOI:10.1175/1520-0469(1992)049<0080:LAMDPI>2.0.CO; 2.
    [9] Sousounis PJ,Fritsch JM. Lake-aggregate mesoscale disturbances. Part II:A case study of the effects on regional and synoptic-scale weather systems. Bulletin of the American Meteorological Society,1994,75(10):1793-1812. DOI:10.1175/1520-0477(1994)075<1793:LAMDPI>2.0.CO; 2.
    [10] Crosman ET,Horel JD. Sea and lake breezes:A review of numerical studies. Boundary-Layer Meteorology,2010,137(1):1-29. DOI:10.1007/s10546-010-9517-9.
    [11] Ljungemyr P,Gustafsson N,Omstedt A. Parameterization of lake thermodynamics in a high-resolution weather forecasting model. Tellus Series A-Dynamic Meteorology&Oceanography,1996,48(5):608-621. DOI:10.1034/j.1600-0870.1996.t01-4-00002.x.
    [12] Wu G,Liu Y,Bian H et al. Thermal controls on the asian summer monsoon. Scientific Reports,2012,2(5):404. DOI:10.1038/srep00404.
    [13] Mao R. Forecasting model of evaporation from Lake Taihu and its application. J Lake Sci,1992,4(4):8-13. DOI:10.18307/1992.0402.[毛锐.太湖水面蒸发量预报模型及其应用.湖泊科学,1992,4(4):8-13.]
    [14] Pal M,Roy MB,Roy PK et al. Fresh water lake model simulation for seasonal variation of latent and sensible heat fluxes from the water surface of Rudrasagar Lake,Tripura. Imperial Journal of Interdisciplinary Research,2016,2(5):1306-1310.
    [15] Mc Gloin R,Mc Gowan H,Mc Jannet D. Effects of diurnal,intra-seasonal and seasonal climate variability on the energy balance of a small subtropical reservoir. International Journal of Climatology,2015,35(9):2308-2325. DOI:10. 1002/joc.4147.
    [16] Lorenzzetti JA,Araújo CAS,Curtarelli MP. Mean diel variability of surface energy fluxes over Manso Reservoir. Inland Waters,2015,5(2):155-172. DOI:10.5268/IW-5.2.761.
    [17] Curtarelli M,Alcntara E,RennóC et al. Effects of cold fronts on MODIS-derived sensible and latent heat fluxes in Itumbiara reservoir(Central Brazil). Advances in Space Research,2013,52(9):1668-1677. DOI:10. 1016/j. asr. 2013.07.037.
    [18] Marie-Nolle B,Guy C,Olivier T et al. Long-term heat exchanges over a Mediterranean lagoon. Journal of Geophysical Research Atmospheres,2012,117(D23). DOI:10.1029/2012JD017857.
    [19] Granger RJ,Hedstrom N. Modelling hourly rates of evaporation from small lakes. Hydrology and Earth System Sciences,2011,15(1):267-277. DOI:10.5194/hess-15-267-2011.
    [20] Blanken PD,Rouse WR,Culf AD et al. Eddy covariance measurements of evaporation from Great Slave Lake,Northwest Territories,Canada. Water Resources Research,2000,36(4):1069-1077. DOI:10.1029/1999WR900338.
    [21] Liu H,Zhang Y,Liu S et al. Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. Journal of Geophysical Research Atmospheres,2009,114(D4):1-13. DOI:10.1029/2008JD010891.
    [22] Curtarlli MP,Alcntara E,RennóC et al. Modeling the effects of cold front passages on the heat fluxes and thermal structure of a tropical hydroelectric reservoir. Hydrology and Earth System Sciences Discussions,2013,10(7):8467-8502.DOI:10.5194/hessd-10-84672013.
    [23] Blanken PD,Spence C,Hedstrom N et al. Evaporation from Lake Superior:1. Physical controls and processes. Journal of Great Lakes Research,2011,37(4):707-716. DOI:10.1016/j.jglr.2011.08.009.
    [24] Blanken PD,Rouse WR,Schertzer WM. Enhancement of evaporation from a large northern lake by the entrainment of warm,dry air. Journal of Hydrometeorology,2003,4(4):680-693. DOI:10. 1175/1525-7541(2003)004 <0680:EOEFAL>2.0.CO; 2.
    [25] Zhang Q,Liu H. Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States. Journal of Geophysical Research Atmospheres,2013,118(10):4290-4302. DOI:10.1002/jgrd.50435.
    [26] Garratt JR. The atmospheric boundary layer. Earth-Science Reviews,1994,37(1/2). DOI:10.1016/0012-8252(94)90026-4.
    [27] Qin B,Xu P,Wu Q et al. Environmental issues of Lake Taihu,China. Hydrobiologia,2007,581(1):3-14. DOI:10.1007/s10750-006-0521-5.
    [28] Zhang PZ,Chen GM. A statistical analysis of the cold wave high which influences on China. Acta Meterologica Sinica,1999,57(4):493-501. DOI:10.11676/qxxb1999.046.[张培忠,陈光明.影响中国寒潮冷高压的统计研究.气象学报,1999,57(4):493-501.]
    [29] Lee X,Liu S,Xiao W et al. The Taihu eddy flux network:An observational program on energy,water,and greenh-ouse gas fluxes of a large freshwater lake. Bulletin of the American Meteorological Society,2014,95(10):1583-1594. DOI:10.1175/BAMS-D-13-00136.1.
    [30] Lee X,Finnigan J,Kyaw TPU eds. Coordinate systems and flux bias error. Netherlands:Springer,2004:33-66. DOI:10.1007/1-4020-2265-4.3.
    [31] Webb EK,Pearman GI,Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfe. Quarterly Journal of the Royal Meteorological Society,1980,106(447):85-100. DOI:10.1002/qj.49710644707.
    [32] Wang DD,Wang W,Liu SD et al. Characteristics of modelling hourly water surface evaporation in Lake Taihu and comparison of simulation results by three models. J Lake Sci,2017,29(6):1538-1550. DOI:10.18307/2017.0626.[王丹丹,王伟,刘寿东等.太湖小时尺度水面蒸发特征及3种模型模拟效果对比.湖泊科学,2017,29(6):1538-1550.]
    [33] GB/T 20484-2017. Grade of cold air.[GB/T 20484-2017.冷空气等级.]
    [34] Zhang Y,Qin B,Zhu G et al. Profound changes in the physical environment of Lake Taihu from 25 years of long-term observations:Implications for algal bloom outbreaks and aquatic macrophyte loss. Water Resources Research,2018,54(7):4319-4331. DOI:10.1029/2017WR022401.
    [35] Chen Q,Han HJ,Zhai SJ et al. Influence of solar radiation and water temperature on chlorophyll-a levels in Lake Taihu,China. Acta Science Circumstantiae,2009,29(1):199-206.[陈桥,韩红娟,翟水晶等.太湖地区太阳辐射与水温的变化特征及其对叶绿素a的影响.环境科学学报,2009,29(1):199-206.]
    [36] Shang ZT,Ren J,Qin MR et al. Relationships between climate change and cyanobacterial bloom in Lake Taihu. Chinese Journal of Ecology,2010,29(1):55-61.[商兆堂,任健,秦铭荣等.气候变化与太湖蓝藻暴发的关系.生态学杂志,2010,29(1):55-61.]
    [37] Wang W. Energy budget at Lake Taihu and its response to climate change[Dissertation]. Nanjing:Nanjing University of Information Science&Technology,2014.[王伟.太湖能量收支及其对气候变化的响应[学位论文].南京:南京信息工程大学,2014.]
    [38] Wang W,Lee X,Xiao W et al. Global lake evaporation accelerated by changes in surface energy allocation in a war-mer climate. Nature Geoscience,2018,11(6):410-414. DOI:10.1038/s41561-018-0114-8.
    [39] Ma T,Wu Z,Jiang Z. How does coldwave frequency in China respond to a warming climate? Climate Dynamics,2012,39(9/10):2487-2496. DOI:10.1007/s00382-012-1354-8.
    [40] Jiang Z,Ma T,Wu Z. China coldwave duration in a warming winter:change of the leading model. Theoretical and Applied Climatology,2012,110(1/2):65-75. DOI:10.1007/s00704-012-0613-2.
    [41] Ma T,Jiang Z,Wu Z. Responses of the leading mode of coldwave intensity in China to a warm climate. Acta Meteor-ologica Sinica,2013,27(5):673-683. DOI:10.1007/s13351-013-0103-1.
    [42] Zhao XS,Wang SG,Li M et al. Comparison of actual water evaporation and pan evaporation in summer over the Lake Poyang,China. J Lake Sci,2014,26(6):955-962. DOI:10.18307/2014.0619.[赵晓松,王仕刚,李梅等.鄱阳湖夏季水热通量特征及环境要素影响分析.湖泊科学,2014,26(6):955-962.]
    [43] Verburg P,Antenucci JP,Hecky RE. Differential cooling drives large-scale convective circulation in Lake Tanganyika.Limnology and Oceanography,2011,56(3):910-926. DOI:10.4319/lo.211.56.3.0910.
    [44] Guo X,Liu H,Yang K. On the application of the Priestley-Taylor relation on sub-daily time scales. Boundary Layer Meteorology,2015,156(3):489-499. DOI:10.1007/s10546-015-0031-y.
    [45] Gao H,Zhang Y,Ma N. Quantifying surface energy fluxes and evaporation over a significant expanding Endorheic Lake in the central Tibetan Plateau. Journal of the Meteorological Society of Japan,2016,94(5):453-465. DOI:10.2151/jmsj.2016-023.
    [46] Liu H,Blanken PD,Weidinger T et al. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environmental Research Letters,2011,6(2):024022. DOI:10. 1088/1748-9326/6/2/024022.
    [47] Lofgren BM,Zhu Y. Surface energy fluxes on the Great Lakes based on satellite-observed surface temperatures 1992 to1995. Journal of Great Lakes Research,2013,26(3):305-314.
    [48] Nordbo A,Launiainen S,Mammarella I et al. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research Atmospheres,2011,116(D2):1-17. DOI:10.1029/2010JD014542.
    [49] Shao C,Chen J,Stepien CA et al. Diurnal to annual changes in latent,sensible heat,and CO2fluxes over a Laurentian Great Lake:A case study in Western Lake Erie. Journal of Geophysical Research:Biogeosciences,2015,120(8):1587-1604. DOI:10.1002/2015JG003025.
    [50] Curtarlli MP,Alcntara E,RennóC et al. Physical changes within a large tropical hydroelectric reservoir induced by wintertime cold front activity. Hydrology and Earth System Sciences,2014,18(8):3079-3093. DOI:10. 5194/hess-18-3079-2014.
    [51] Lenters JD,Kratz TK,Bowser CJ. Effects of climate variability on lake evaporation:Results from a long-term energy budget study of Sparkling Lake,northern Wisconsin(USA). Journal of Hydrology,2005,308(1/2/3/4):168-195. DOI:10.1016/j.jhydrol.2004.10.028.
    [52] Oswald CJ,Rouse WR. Thermal characteristics and energy balance of various-size Canadian shield lakes in the Mackenzie River Basin. Journal of Hydrometeorology,2004,5(1):129-144. DOI:10.1016/j.jhydrol.2004.10.028.
    [53] Li Z,Lyu S,Ao Y et al. Long-term energy flux and radiation balance observations over Lake Ngoring,Tibetan Plateau. Atmospheric Research,2015,155(155):13-25. DOI:10.1016/j.atmosres.2014.11.019.
    [54] Curtarlli MP,RennóC,Alcntara E et al. Effects of cold front passage and atmospheric boundary layer stability in the estimates of spatially distributed heat fluxes in a tropical reservoir. Geoscience and Remote Sensing Symposium,2012:5246-5249. DOI:10.1109/IGARSS:2012.6352426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700