初始微结构对多晶金属Be宏观力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Initial Microstructures on the Macroscopic Mechanical Properties of Polycrystalline Beryllium
  • 作者:杨祖坤 ; 张昌盛 ; 庞蓓蓓 ; 洪艳艳 ; 莫方杰 ; 刘昭 ; 孙光爱
  • 英文作者:YANG Zukun;ZHANG Changsheng;PANG Beibei;HONG Yanyan;MO Fangjie;LIU Zhao;SUN Guang'ai;Key Laboratory for Neutron Physics of Chinese Academy of Engineering Physics,Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics;
  • 关键词:多晶Be ; 初始微结构 ; 压缩力学性能 ; 原位中子衍射
  • 英文关键词:polycrystalline beryllium;;initial microstructure;;compressive mechanical property;;in-situ neutron diffraction
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:中国工程物理研究院核物理与化学研究所中国工程物理研究院中子物理学重点实验室;
  • 出版日期:2018-08-11
  • 出版单位:金属学报
  • 年:2018
  • 期:v.54
  • 基金:国家自然科学基金项目No.51501170;; 国家重点研发计划项目No.2017YFB0702400;; 中国工程物理研究院院长基金项目No.2014-1-024~~
  • 语种:中文;
  • 页:JSXB201808008
  • 页数:7
  • CN:08
  • ISSN:21-1139/TG
  • 分类号:66-72
摘要
通过室温准静态(应变率10-3s-1)、高温准静态(600℃,应变率10-3s-1)和室温动态(应变率103s-1)预压缩变形分别实现金属Be内部3种不同微观结构的形成,进而实现多晶金属Be宏观压缩力学性能的调节,研究了初始微观结构对多晶金属Be压缩力学性能的影响及作用机理。结果表明,3种不同初始微结构样品中,室温准静态预压样品压缩力学响应最硬,而室温动态预压样品最软。显微组织、宏观织构测试以及原位中子衍射力学实验测试表明,室温准静态预压样品形成"弱织构"型初始微结构,微观力学响应上表现为(00.2)晶面优先受力,且由于引入一定位错使形变硬化效应相较于其它试样更为明显;而室温动态预压样品形成"强织构"型初始微结构且存在一些微孔洞,微观力学响应上表现为(00.2)晶面主要受力,微孔洞参与部分应力配分抑制了形变硬化效应;高温准静态预压样品形成的"随机取向"型初始微结构,微观力学响应上表现为初期各晶面均等受力、(11.0)晶面逐渐受力增加,且位错密度降低使内部协调变形相对容易。通过不同尺度上微观结构的协同配合可以实现宏观力学性能的调节,基于此可定制满足特定服役场景需求的性能。
        The hexagonal close-packed(hcp) metal Be has many potential applications. Much attention has been attracted on its mechanical properties and deformation mechanism. It has been found that the deformation mechanism involves the dislocation slip, twinning and their interaction, which are controlled by temperature, strain rate and initial texture. Typically, the softening and hardening behaviors in mechanical properties can be respectively induced through the elevated temperature and high strain rate. However, the microstructures engineering for properties tailoring in Be is still an open question. In this work, the effect of different initial microstructures on mechanical properties of polycrystalline beryllium was investigated, and the underlying mechanism was revealed by OM, SEM and in-situ neutron diffraction measurement. Three different kinds of microstructures have been achieved in Be by different predeformation strategies:(i) room temperature(RT) and the strain rate of 10-3 s-1,(ii) 600 ℃ and 10-3 s-1,and(iii) RT and 103 s-1, respectively. The mechanical properties of the polycrystalline Be are consequently tailored. The results show that, the compressive mechanical response is the hardest for the sample quasi-statically pre-deformed at RT, while is the softest for the dynamically pre-deformed one. The sample quasi-statically pre-deformed at RT possesses the "weak texture" type of initial microstructure, for which the(00.2) plane preferentially bears the compressive strain during the microscopic mechanical response; due to the combined effects of the initially preferred microstructure and induced dislocation, this sample exhibits the relatively obvious deformation-hardening with respect to the other ones. The sample dynamically pre-deformed at RT has the "strong texture" type of initial microstructure and some microvoids; the(00.2) plane also mainly bears the compressive strain during the microscopic response; however, the deformation-hardening effect is weakened because the existing micro-voids participate the stress partition. The sample quasi-statically pre-deformed at 600 ℃ possesses the "random orientation" type of initial microstructure; each plane for this sample bears the compressive strain equally at the preliminary stage during the microscopic response and then the lattice strain for(11.0) plan increases with the increase of loading stress; for such case, the deformation accommodation inside the sample becomes relatively easier due to the decreased dislocation density. It suggests that the controllable mechanical properties can be realized through collaborative configurations of microstructures at different scales. The material properties can be customized through the microstructure engineering to meet the particular service requirements.
引文
[1]Kupriyanov I B,Nikolaev G N,Gorayev G.Progress in development and qualification of beryllium for ITER blanket first wall application in Russian federation[J].Fusion Eng.Des.,2017,124:1004
    [2]Zhang Y S,Qin Y J,Wu D Z,et al.A nature and application of beryllium,its alloys and beryllium in alloys[J].Trans.Chin.Weld.Inst.,2001,22(6):92(张友寿,秦有钧,吴东周等.铍和含铍材料的性能及应用[J].焊接学报,2001,22(6):92)
    [3]Xu D M,Qin G W,Li F,et al.Advances in beryllium and berylliumcontaining materials[J].Chin.J.Nonferrous Met.,2014,24:1212(许德美,秦高梧,李峰等.国内外铍及含铍材料的研究进展[J].中国有色金属学报,2014,24:1212)
    [4]Wu Y D.Beryllium—Properties,production and application[M].Beijing:Metallurgical Industry Press,1986:1(吴源道.铍—性质、生产和应用[M].北京:冶金工业出版社,1986:1)
    [5]Organization of Experts Committee of China Nonferrous Metal Industry Association.Beryllium Industry in China[M].Beijing:Metallurgical Industry Press,2015:22(中国有色金属工业协会专家委员会组织.中国铍业[M].北京:冶金工业出版社,2015:22)
    [6]Wang L S,Zhong J M,Fu X X,et al.The influence of grain size on mechanical properties of isostatically pressed beryllium materials[J].J.Cent.South Univ.Technol.,1999,30:395(王零森,钟景明,付晓旭等.晶粒尺寸对等静压铍材力学性能的影响[J].中南工业大学学报,1999,30:395)
    [7]Xu D M,Qin G W,Li F,et al.Effects of morphology and distribution of Be O impurity on mechanical properties of metal beryllium[J].Chin.J.Nonferrous Met.,2011,21:769(许德美,秦高梧,李峰等.Be O杂质形态与分布对金属铍力学性能的影响[J].中国有色金属学报,2011,21:769)
    [8]Xu D M,Li F,Wang D X,et al.Effects of microstructure defects on fracture behavior of beryllium metal at room-temperature[J].Chin.J.Rare Met.,2010,34:844(许德美,李峰,王东新等.组织缺陷对金属铍室温断裂行为的影响规律研究[J].稀有金属,2010,34:844)
    [9]Xu D M,Qin G W,Li F,et al.Tensile deformation and fracture behavior of polycrystalline beryllium at room temperature[J].Acta.Metall.Sin.,2014,50:1078(许德美,秦高梧,李峰等.多晶Be室温拉伸变形和断裂行为[J].金属学报,2014,50:1078)
    [10]Xu D M.Study on room temperature brittlenss of polycrystalline beryllium[D].Shenyang:Northeastern University,2015(许德美.多晶Be的室温脆性研究[D].沈阳:东北大学,2015)
    [11]Xiao D W,Qiu Z C,Wu X C,et al.Compressive deformation behaviors of beryllium[J].Explos.Shock Waves,2016,36:285(肖大武,邱志聪,巫祥超等.金属铍的压缩变形行为[J].爆炸与冲击,2016,36:285)
    [12]Qiu Z C,Xiao D W,Chen X L,et al.Mechanical properties of Be at different temperatures[J].Chin.J.Rare Met.,2015,39:16(邱志聪,肖大武.陈向林等.温度对铍力学性能的影响[J].稀有金属,2015,39:16)
    [13]Blumenthal W R,Abel S P,Mataya M C,et al.Dynamic behavior of beryllium as a function of texture[R].Cancun,Mexico:Los Alamos National Laboratory,1999
    [14]Brown D W,Beyerlein I J,Sisneros T A,et al.Role of twinning and slip during compressive deformation of beryllium as a function of strain rate[J].Int.J.Plast.,2012,29:120
    [15]Brown D W,Almer J D,Clausen B,et al.Twinning and deTwinning in beryllium during strain path changes[J].Mater.Sci.Eng.,2013,A559:29
    [16]Sisneros T A,Brown D W,Clausen B,et al.Influence of strain rate on mechanical properties and deformation texture of hotpressed and rolled beryllium[J].Mater.Sci.Eng.,2010,A527:5181
    [17]Brown D W,Sisneros T A,Clausen B,et al.Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures[J].Acta Mater.,2009,57:972
    [18]Capolungo L,Beyerlein I J,Kaschner G C,et al.On the interaction between slip dislocations and twins in HCP Zr[J].Mater.Sci.Eng.,2009,A513-514:42
    [19]Sarker D,Chen D L.Dependence of compressive deformation on pre-strain and loading direction in an extruded magnesium alloy:Texture,twinning and de-twinning[J].Mater.Sci.Eng.,2014,A596:134
    [20]Brown D W,Agnew S R,Bourke M A M,et al.Internal strain and texture evolution during deformation twinning in magnesium[J].Mater.Sci.Eng.,2005,A399:1
    [21]Zou Y,Li J,Wang H,et al.Deformation mode transition of Mg-3Li alloy:An in situ neutron diffraction study[J].J.Alloys Compd.,2016,685:331
    [22]Knezevic M,Beyerlein I J,Brown D W,et al.A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes:Application to beryllium[J].Int.J.Plast.,2013,49:185
    [23]Li J,Wang H,Sun G A,et al.Neutron diffractometer RSND for residual stress analysis at CAEP[J].Nucl.Instrum.Methods Phys.Res.,,2015,783A:76
    [24]Randau C,Garbe U,Brokmeier H G.Stress Texture Calculator:A software tool to extract texture,strain and microstructure information from area-detector measurements[J].J.Appl.Cryst.,2011,44:641
    [25]Wang Y N,Huang J C.Texture analysis in hexagonal materials[J].Mater.Chem.Phys.,2003,81:11
    [26]Mittemeijer E J,Welzel U.Modern Diffraction Methods[M].Weinheim:Wiley-VCH Verlag Gmb H&Co.KGa A,2013:100
    [27]Zhong J M,Gao Y,Wang D X,et al.Micro-yield behavior and mechanism of beryllium metal[J].Chin.J.Nonferrous Met.,2004,14:1637(钟景明,高勇,王东新等.金属铍的微屈服行为及机理[J].中国有色金属学报,2004,14:1637)
    [28]Yang D H,Yang S R,Wang H,et al.Compressive properties of cellular Mg foams fabricated by melt-foaming method[J].Mater.Sci.Eng.,2010,A527:5405
    [29]Hu Z Y,Yang D H,Li J,et al.Manufacture,characterization and application of magnesium based foams[J].Mater.Rev.,2014,28(1):79(胡中芸,杨东辉,李军等.泡沫镁的制备及其性能和应用[J].材料导报,2014,28(1):79)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700