波浪、海流环境中跨海桥梁深水桥墩的地震响应特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic Response Characteristics of Deep-water Piers of Sea-crossing Bridges in Wave-current Environment
  • 作者:江辉 ; 白晓宇 ; 黄磊 ; 李辰 ; 孟宪锋 ; 杨庆山
  • 英文作者:JIANG Hui;BAI Xiaoyu;HUANG Lei;LI Chen;MENG Xianfeng;YANG Qingshan;School of Civil Engineering, Beijing Jiaotong University;China Airport Construction Group Co., Ltd.;School of Civil Engineering, Chongqing University;
  • 关键词:跨海桥梁 ; 深水桥墩 ; 波浪 ; 海流 ; 地震 ; 流固耦合 ; 动力响应
  • 英文关键词:sea-crossing bridge;;deep-water bridge pier;;wave;;current;;earthquake;;fluid-structure coupling interaction;;dynamic response
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:北京交通大学土木建筑工程学院;中国民航机场建设集团有限公司;重庆大学土木工程学院;
  • 出版日期:2019-03-15
  • 出版单位:铁道学报
  • 年:2019
  • 期:v.41;No.257
  • 基金:中央高校基本科研业务费(2018YJS115);; 国家自然科学基金(51378050);; 高等学校学科创新引智计划(111计划)(B13002);; 北京市自然科学基金(8192035)
  • 语种:中文;
  • 页:TDXB201903017
  • 页数:11
  • CN:03
  • ISSN:11-2104/U
  • 分类号:123-133
摘要
以跨海桥梁深水桥墩为对象,建立可考虑波浪、海流及地震共同作用的精细化双向流固耦合计算模型,系统讨论了不同波、流参数下桥墩的地震响应特性及参数影响规律。结果表明,波、流联合作用时,深水桥墩响应峰值随流速、水深、波高的增加而增大,随波浪周期的增大而减小。波、流及地震共同作用下,桥墩响应幅值大于或小于地震单独作用时,但仍以地震作用为主,其响应特征与地震单独作用时相同;桥墩响应峰值随波浪相位、周期的增加而波动,随波高、水深的增加而增大或减小,随流速的增加而先增大后减小。波、流环境影响桥墩的地震响应,其程度与地震动频谱特性及波、流参数有关,其影响幅度最大可达到30.0%以上,在跨海桥梁抗震设计中应予以考虑。
        Based on the case study of the deep-water piers of sea-crossing bridges, the refined finite element models of the piers were established to consider the two-way fluid-structure coupling interaction under wave, current and earthquake actions. The seismic response characteristics and influence of parameters of the deep-water piers were systematically discussed under different wave and current parameters. The results show that, under the combined excitations of waves and currents, the peak dynamic responses of piers increase with the augment of current velocity, water depth and wave height, and decrease with the increase of wave period. Under the simultaneous excitations of waves, currents and earthquakes, the maximum dynamic responses of piers are greater or less than those due to earthquake load alone, while the earthquake excitation is still the main factor. The dynamic response characteristics of piers are the same as those under the action of earthquake alone. In addition, the dynamic responses of piers fluctuate with the increase of wave phase and period, increase or decrease with the augment of wave height and water depth. The peak dynamic responses increase first and then decrease along with the increase of current velocity. Wave and current environment can change the seismic response of piers, the extent of which is related to the ground motion spectrum characteristics, as well as the wave and current parameters. The maximum influence of wave and current can be more than 30%. Therefore, the dynamic action of wave and current should be taken into account in the seismic design of sea-crossing deep-water bridges.
引文
[1] 柳春光,张士博. 考虑地震、波浪和海流作用的跨海桥梁结构研究进展[J]. 大连理工大学学报,2017,57(1):105-110.LIU Chunguang, ZHANG Shibo. Research Progress of Sea-crossing Bridge Structure Considering Earthquake, Wave and Current[J]. Journal of Dalian University of Technology, 2017, 57(1): 105-110.
    [2] YAMADA Y, IEMURA H, KAWANO K, et al. Seismic Response of Offshore Structures in Random Seas[J]. Earthquake Engineering & Structure Dynamic, 1989, 18(7): 965-981.
    [3] JAIN A K. Dynamics of Offshore Structures under Sea Waves and Earthquake Forces[J]. Offshore Technology, 1996, 1: 191-198.
    [4] ETEMAD A K,GHARABAGHI A R M,CHENAGHLOU M R. Nonlinear Dynamic Behavior of Fixed Jacket-type Offshore Platforms Subjected to Simultaneously Acting Wave and Earthquake Loads[C]//23rd International Conference on Offshore Mechanics and Arctic Engineering. San Diego: American Society of Mechanical Engineers, 2004: 893-900.
    [5] VENKATARAMANA K, KAWANO K. Nonlinear Dynamics of Offshore Structures under Sea Wave and Earthquake Forces[J]. Sadhana, 1995, 20(2): 501-512.
    [6] ZHENG X Y, LI H B, RONG W D, et al. Joint Earthquake and Wave Action on the Monopile Wind Turbine Foundation: an experimental Study[J]. Marine Structures, 2015, 44(1):125-141.
    [7] 李忠献,黄信. 地震和波浪联合作用下深水桥梁的动力响应[J]. 土木工程学报,2012,45(11):134-140.LI Zhongxian, HUANG Xin. Dynamic Responses of Bridges in Deep Water under Combined Earthquake and Wave Actions[J]. China Civil Engineering Journal, 2012, 45(11): 134-140.
    [8] 林曾,袁万成. 考虑波浪作用下的深水桥墩地震响应分析[J]. 土木工程与管理学报, 2015,32(2):37-41.LIN Zeng, YUAN Wancheng. Seismic Response of Bridge Pier in Deep Water Considering Wave Action[J]. Journal of Civil Engineering and Management, 2015,32(2): 37-41.
    [9] 袁卫国,刘沐宇. 波浪和地震作用下的跨海大桥桥墩荷载效应分析[J]. 武汉理工大学学报,2013,35(12):120-124.YUAN Weiguo, LIU Muyu. Load Effect Analysis of Cross-sea Bridge’s Pier on the Wave and Earthquake Effect[J]. Journal of Wuhan University of Technology, 2013, 35(12): 120-124.
    [10] DING Y, MENG S B, SHI Y D. Stochastic Dynamic Response Analysis of Bridge Piers in Deep Water under Combined Earthquake and Wave Actions[C]//Proceedings of the 16th World Conference on Earthquake Engineering. Santiago Chile, 2017: 4527.
    [11] 陈国兴,白德贵,王志华. 考虑波流影响的深水群桩基础桥墩地震反应分析[J]. 地震工程与工程振动,2008,28(5):170-177.CHEN Guoxing, BAI Degui, WANG Zhihua. Seismic Response Analysis of Large Scale Bridge Pier Supported by Pile Foundation Considering the Effect of Wave and Current Action[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(5): 170-177.
    [12] 吴安杰,杨万理,赵雷. 波流与地震共同作用下深水桥墩动力响应分析[J]. 西南交通大学学报,2018,53(1):79-87.WU Anjie, YANG Wanli, ZHAO Lei. Dynamic Response Analysis of Bridge Pier in Deep Water under Combined Loads of Wave, Current and Earthquake[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 79-87.
    [13] 董志,詹杰民. 基于VOF方法的数值波浪水槽以及造波、消波方法研究[J]. 水动力学研究与进展,2009,24(1):15-21.DONG Zhi, ZHAN Jiemin. Comparison of Existing Methods for Wave Generating and Absorbing in VOF-based Numerical Tank[J]. Journal of Hydrodynamics, 2009, 24(1): 15-21.
    [14] 谷汉斌,陈汉宝,栾英妮,等. 平推式造波板运动的数值模拟[J]. 水道港口,2011,32(4): 244-251.GU Hanbin, CHEN Hanbao, LUAN Yingni, et al. Piston Wave-maker Motion by Numerical Method[J].Journal of Waterway and Harbor, 2011, 32(4): 244-251.
    [15] 岳戈. ADINA流体与流固耦合功能的高级应用[M]. 北京:人民交通出版社,2010:16-35.
    [16] ADINA R & D, Inc.. ADINA Theory and Modeling Guide Volume Ⅲ:ADINA CFD & FSI[Z]. Watertown: ADINA R & D, Inc., 2012.
    [17] 谭鹏涛. 波流地震联合作用下海底悬跨管道的动力响应[D]. 大连:大连理工大学,2017:35-37.
    [18] 李远林. 波浪理论及波浪载荷[M]. 广州:华南理工大学出版社,1994:75-88.
    [19] 黄祥鹿,陆鑫森. 海洋工程流体力学及结构动力响应[M]. 上海:上海交通大学出版社,1992:26-27.
    [20] 竺艳蓉. 海洋工程波浪力学[M]. 天津:天津大学出版社,1991:93-94.
    [21] 王伟. 波浪对桥墩动力作用机理及数值模拟[D]. 成都:西南交通大学,2015:60.
    [22] 白晓宇. 波、流环境中深水桥墩地震响应特性研究[D]. 北京:北京交通大学,2017:48-55.
    [23] 江辉,王宝喜,白晓宇,等. 近、远场强震下深水桥墩的非线性动力响应特性[J]. 华中科技大学学报(自然科学版),2017,45(8):81-86.JIANG Hui, WANG Baoxi, BAI Xiaoyu, et al. Nonlinear Dynamic Response Character of Deep-water Bridge Piers Excited by Strong Near-fault and Far-field Earthquake[J]. Journal of Huazhong University of Science and Technology (Natural and Science Edition). 2017,45(8):81-86.
    [24] 吴安杰. 波流与地震共同作用下深水桥梁下部结构动水压力研究[D]. 成都:西南交通大学,2017:87.
    [25] 李玉成. 波浪与水流共同作用下波浪要素的变化[J]. 海洋通报,1984,3(3):3-14.LI Yucheng. The Variation of Wave Factors under the Combined Effect of Wave and Current[J]. Marine Science Bulletin, 1984, 3(3): 3-14.
    [26] 程勇,嵇春艳,翟钢军. 波流与不均匀海域上浮式弹性板相互作用的非线性数值模拟[J]. 振动与冲击,2017,36(12):112-121.CHENG Yong, JI Chunyan, ZHAI Gangjun. Nonlinear Numerical Simulation for Wave-current Interaction with a Floating Elastic Plate over Variable Depth Sea Bottom[J]. Journal of Vibration and Shock. 2017, 36(12): 112-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700