典型甚低频电磁波对辐射带高能电子的散射损失效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave
  • 作者:罗旭东 ; 牛胜利 ; 左应红
  • 英文作者:Luo Xu-Dong;Niu Sheng-Li;Zuo Ying-Hong;Northwest Institute of Nuclear Technology;
  • 关键词:辐射带 ; 波粒共振散射 ; 扩散系数 ; 甚低频电磁波
  • 英文关键词:radiation belt,wave-particle resonance diffusion,diffusion coefficient,very low frequency electromagnetic wave
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北核技术研究所;
  • 出版日期:2015-02-12 09:47
  • 出版单位:物理学报
  • 年:2015
  • 期:v.64
  • 语种:中文;
  • 页:WLXB201506056
  • 页数:8
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:410-417
摘要
辐射带中高能电子与空间甚低频电磁波由于波粒共振相互作用发生投掷角散射,进而沉降入稠密大气而损失.为研究甚低频电磁波对辐射带中高能电子的散射作用机制,本文基于准线性扩散理论,利用库仑作用和波粒共振相互作用扩散系数的物理模型,得到了两组典型甚低频电磁波与高能电子波粒共振相互作用的赤道投掷角弹跳周期平均扩散系数,并分析了甚低频电磁波共振散射作用与大气库仑散射作用对不同磁壳及不同能量的辐射带电子扩散损失的影响规律.以磁壳参数L=2.2,能量E=0.5 Me V的辐射带电子作为算例,采用有限差分方法数值求解扩散方程,计算分析了电子单向通量和全向通量随时间的沉降损失演化规律.研究结果表明:当电子能量大于0.5 Me V,磁壳参数大于1.6时,甚低频电磁波的共振散射作用显著;随着磁壳参数或电子能量的增大,斜传播甚低频电磁波引起的高阶共振相互作用越来越大;电子全向通量近似随时间呈指数函数形式衰减.
        Radiation belt energetic electrons can interact with very low frequency(VLF) electromagnetic wave due to waveparticle resonance; then the particles are imposed to enter into the loss cone and sink to dense atmosphere resulting from changing of its pitch angle. To investigate the diffusion mechanism of interaction of VLF electromagnetic wave with radiation belt energetic electrons, according to quasi-linear diffusion theory, in this paper we use a physical model to calculate diffusion coefficients of Coulomb scatting and wave-particle resonance interaction. Bounce-averaged pitch angle diffusion coefficients of energetic electrons due to the interaction of wave-particle resonance with two groups of VLF electromagnetic waves are obtained. The influence of interaction caused by VLF electromagnetic wave and Coulomb scatting on diffusion of radiation belt energetic electrons for different L shells and various energies are analyzed. Take the case for example, where L equals 2.2 and electron energy E equals 0.5 Me V, the diffusion equation of energetic electrons are solved by using the finite difference method. The time evolutions of precipitation of directional particle flux and omnidirectional particle flux are analyzed. The results show that the resonance interaction caused by VLF electromagnetic wave plays a dominant role when E > 0.5 Me V and L > 1.6; the higher the L shell or electron energy value, the more significant the high order resonance interaction caused by the oblique propagation VLF electromagnetic wave will be; approximately, the omnidirectional particle flux of radiation belt energetic electrons decreases exponentially with time.
引文
[1]Horne R B,Thorne R M,Shprits Y Y,Meredith N P,Glauert S A,Smith A J,Kanekal S G,Baker D N,Engebretson M J,Posch J L,Spasojevic M,Inan U S,Pickett J S,Decreau P M E 2005 Nature 437 227
    [2]Chang S S,Ni B B,Zhao Z Y,Gu X D,Zhou C 2014Chin.Phys.B 23 089401
    [3]Dupont D G 2004 Scientific American 290 100
    [4]Graf K L,Inan U S,Piddyachiy D 2009 J.Geophys.Res.38 114
    [5]Kennel C F,Petschek H E 1966 J.Geophys.Res.7 1
    [6]Summers D 2005 J.Geophys.Res.A 110 08213
    [7]Shprits Y Y,Thorne R M,Horne R B,Summers D 2006J.Geophys.Res.A 111 10225
    [8]Gu X D,Zhao Z Y,Ni B B,Wang X,Deng F 2008 Acta Phys.Sin.57 6673(in Chinese)[顾旭东,赵正予,倪彬彬,王翔,邓峰2008物理学报57 6673]
    [9]Wang P,Wang H Y,Ma Y Q,Li X Q,Lu H,Meng X C,Zhang J L,Wang H,Shi F,Xu Y B,Yu X X,Zhao X Y,Wu F 2011 Acta Phys.Sin.60 039401(in Chinese)[王平,王焕玉,马宇蒨,李新乔,卢红,孟祥承,张吉龙,王辉,石峰,徐岩冰,于晓霞,赵小芸,吴峰2011物理学报60039401]
    [10]Zhang Z X,Wang C Y,Li Q,Wu S G 2014 Acta Phys.Sin.63 079401(in Chinese)[张振霞,王辰宇,李强,吴书贵2014物理学报63 079401]
    [11]Walt M,Mac Donald W 1964 Rev.Geophys.2 543
    [12]Schulz M,Lanzerotti L J 1974 Particle Diffusion in the Radiation Belts(New York:Springer-Verlag Press)pp60
    [13]Kennel C F,Engelmann F 1966 Phys.Fluids 9 2377
    [14]Lyons L R 1974 J.Plasma Phys.12 417
    [15]Walt M 1994 Introduction to Geomagnetically Trapped Radiation(London:Cambridge University Press)pp64,115
    [16]Glauert S A Horne R B 2005 J.Geophys.Res.A 11004206
    [17]Chen F F(Translated by Lin G H)1980 Introduction to Plasma Physics(Beijing:People’s Education Press)p77(in Chinese)[Chen F F著(林光海译)1980等离子体物理学导论(北京:人民教育出版社)第77页]
    [18]Lyons L R,Thorne R M,Kennel C F 1971 J.Plasma Phys.6 589
    [19]Lyons L R,Thorne R M,Kennel C F 1972 J.Geophys.Res.77 3455
    [20]Niu S L,Luo X D,Wang J G,Qiao D J 2011 Chin.J.Comput.Phys.28 645(in Chinese)[牛胜利,罗旭东,王建国,乔登江2011计算物理28 645]
    [21]Albert J M,Young S L 2005 Geophys.Res.Ett.32L14110
    [22]Abel B,Thorne R M 1998 J.Geophys.Res.103 2385
    [23]Abel B,Thorne R M 1998 J.Geophys.Res.103 2397
    [24]Shprits Y,Subbotin D,Ni B B,Horne R,Baker D,Cruce P 2011 Pace Weather 9 S08007
    [25]Lu J F,Guan Z 2004 Numerical Methods for Partial Differential Equations(2nd Ed.)(Beijing:Tsinghua University Press)pp83,109(in Chinese)[陆金甫,关冶2004偏微分方程数值解法(第2版)(北京:清华大学出版社)第83 ,109页]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700