黄河源区多年冻土活动层土壤水文过程季节变异分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River
  • 作者:曹伟 ; 盛煜 ; 吴吉春 ; 王生廷 ; 马帅
  • 英文作者:CAO Wei;SHENG Yu;WU Jichun;WANG Shengting;MA Shuai;State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,CAS;
  • 关键词:多年冻土 ; 活动层 ; 土壤水文过程 ; 季节变异 ; 黄河源区
  • 英文关键词:permafrost;;active layer;;soil hydrological process;;seasonal variation;;source region of the Yellow River
  • 中文刊名:SKXJ
  • 英文刊名:Advances in Water Science
  • 机构:中国科学院西北生态环境资源研究院冻土工程国家重点实验室;
  • 出版日期:2018-01-17 16:20
  • 出版单位:水科学进展
  • 年:2018
  • 期:v.29;No.142
  • 基金:国家自然科学基金资助项目(41501079;91647103)~~
  • 语种:中文;
  • 页:SKXJ201801001
  • 页数:10
  • CN:01
  • ISSN:32-1309/P
  • 分类号:4-13
摘要
为从整体上认识多年冻土活动层土壤水文过程季节变异特性,以黄河源区巴颜喀拉山北坡冻土剖面为例,结合大气降水、冻土土壤水分、冻土层上水的野外观测,采用HYDRUS-1D软件冻融模块进行模拟分析,分析冻融作用对活动层土壤水文过程的影响,研究结果表明:(1)冻土层上水位与土壤水热之间存在着相互影响、相互作用的关系,依据活动层土壤温度变化,基于冻融过程,多年冻土活动层土壤水分与冻土层上水位可划分为冻结稳定、快速融化、融化稳定和快速冻结4个阶段。(2)降雨入渗是坡面尺度下活动层土壤水文过程的主要驱动力,活动层冻融锋面是主要限制性因素,受冻融过程影响,冻结期降雨减少,土壤冻结,土壤储水能力下降,土壤水分下渗停止,坡面侧向流动减弱,土壤水分和冻土层上水位处于下降趋势;融化期降雨增多,土壤融化,土壤储水能力上升,土壤水分下渗强烈,坡面侧向流动增强,土壤水分和冻土层上水位处于上升趋势。(3)受坡面地形影响,上坡活动层厚度大于下坡,上坡冻融锋面变化较下坡平缓,上坡土壤水分和冻土层上水位的变化幅度相对下坡较为平缓,而上坡土壤水分相对下坡含量较低,下坡冻土层上水位相对稳定。
        In this paper,a permafrost cross-section at the northern slope of the Bayan Har Mountains in the source region of the Yellow River is studied. Based on the field observations,herein,the data has been collected from various sources including atmospheric precipitation,soil moisture,and supra-permafrost waterflow. According to the variations of the gathered data,the seasonal variability of soil hydrological processes in active layers is statistically investigated.In addition,the influence of freeze-thaw action on the hydrological process in an activity layer is numerically simulated by HYDRUS-1 D software package. The obtained results are summarized in the following:(1) There is a close relationship between the supra-permafrost water flow and soil-water-heat at the slope scale. Using the variation of soil temperature in an active layer,the soil moisture and the supra-permafrost water flow are divided into four different phases based on the freeze-thaw action,including the frozen stability,the rapid thawing,the thawing stability,and the rapid frozen.(2) Rainfall infiltration is regarded as the main driving force of soil hydrological processes in an active layer on the slope scale,as well as the freeze-thaw action in an active layer in which both are taken into account as major factors,imposing limitations. Due to the effect of freeze-thaw process in active layers,the precipitation in the freeze period decreases. In addition,due to the soil freezing,the soil water storage capacity reduces. Moreover,the soil water infiltration stops as well as the slope lateral flow diminish. Therefore,the soil moisture and the supra-permafrost water flow are regarded in a downward trend. Furthermore,the precipitation in the thaw period and the soil water storage capacity,due to the thawing of the soil,will eventually increases. It should be mentioned that the soil water infiltration and slope lateral flow increase; consequently,the soil moisture and the supra-permafrost water flow are taken into account in an upward trend.(3) The thickness of an active layer on the upslope is higher than that one on the downslope because of the effect of terrain slope,leading to changing the freeze-thaw action on the upslope which its rate is higher than that one on the downslope. Additionally,the variation of the soil moisture and the supra-permafrost water flow on the upslope is higher than that one on the downslope. Consequently,the soil moisture content on the upslope is lower than that one on the downslope,while the supra-permafrost water flow on the downslope is relatively stable.
引文
[1]JORGENSON M T,ROMANOVSKY V,HARDEN J,et al.Resilience and vulnerability of permafrost to climate change[J].Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere,2010,40(7):1219-1236.
    [2]WOO M K,KANE D L,CAREY S K,et al.Progress in permafrost hydrology in the New Millennium[J].Permafrost and Periglacial Processes,2008,19(2):237-254.
    [3]CHENG G D,JIN H J.Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J].Hydrogeology Journal,2013,21(1):5-23.
    [4]WRIGHT N,HAYASHI M,QUINTON W L.Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain[J].Water Resources Research,2009,45.[doi:10.1029/2008WR006880]
    [5]杨针娘,杨志怀,梁凤仙,等.祁连山冰沟流域冻土水文过程[J].冰川冻土,1993,15(2):235-241.(YANG Z L,YANG Z H,LIANG F X,et al.Permafrost hydrological processes in Binggou basin of Qilian Mountains[J].Journal of Glaciology and Geocryology,1993,15(2):235-241.(in Chinese))
    [6]CHANG J,WANG G X,LI C J,et al.Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J].Science China:Earth Sciences,2015,45(4):481-493.
    [7]程慧艳,王根绪,王一博,等.黄河源区不同植被类型覆盖下季节冻土冻融过程中的土壤温湿空间变化[J].兰州大学学报(自然科学版),2008,44(2):15-21.(CHENG H Y,WANG G X,WANG Y B,et al.Variations of soil temperature and water moisture of seasonal frozen soil with different vegetation cover-ages in the source region of the Yellow River,China[J].Journal of Lanzhou University(Natural Sciences),2008,44(2):15-21.(in Chinese))
    [8]曹文炳,万力,周训,等.黄河源区冻结层上水地质环境影响研究[J].水文地质工程地质,2003,30(6):6-10.(CAO W B,WAN L,ZHOU X,et al.A study of the geological environmental of suprapermafrost water in the headwater area of the Yellow River[J].Hydrogeology&Engineering Geology,2003,30(6):6-10.(in Chinese))
    [9]曹伟,盛煜,吴吉春,等.青藏高原坡面冻土土壤水分空间变异特性[J].水科学进展,2017,28(1):32-40.(CAO W,SHENG Y,WU J C,et al.Spatial variability of permafrost soil-moisture on the slope of the Qinghai-Tibet Plateau[J].Advances in Water Science,2017,28(1):32-40.(in Chinese))
    [10]WANG G X,QIAN J,CHENG G D,et al.Eco-environmental degradation and causal analysis in the source region of the Yellow River[J].Environmental Geology,2001,40(7):884-890.
    [11]NIU L,YE B S,LI J,et al.Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western[J].Science China:Earth Sciences,2011,41(1):85-92.
    [12]张森琦,王永贵,赵永真,等.黄河源区多年冻土退化及其环境反映[J].冰川冻土,2004,26(1):1-6.(ZHANG S Q,WANG Y G,ZHAO Y Z,et al.Permafrost degradation and its environment sequent in the Source Regions of the Yellow River[J].Journal of Glaciology and Geocryology,2004,26(1):1-6.(in Chinese))
    [13]LAI X M,LIAO K H,FENG H H,et al.Responses of soil water percolation to dynamic interactions among rainfall,antecedent moisture and season in a forest site[J].Journal of Hydrology,2016,540:565-573.
    [14]HANSSON K,IMU。NEK J,MIZOGUCHI M,et al.Water flow and heat transport in frozen soil:numerical solution and freeze/thaw applications[J].Vadose Zone Journal,2004,3(2):527-533.
    [15]吴谋松,黄介生,谭霄,等.不同地下水补给条件下非饱和砂壤土冻结试验及模拟[J].水科学进展,2014,25(1):60-68.(WU M S,HUANG J S,TAN X,et al.A study of freezing process in variably-saturated sandy-loam soil under different water tabledepths:experiment and simulation[J].Advances in Water Science,2014,25(1):60-68.(in Chinese))
    [16]王庆锋,金会军,张廷军,等.祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J].科学通报,2016,61(24):2742-2756.(WANG Q F,JIN H J,ZHANG T J,et al.Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J].Chinese Science Bulletin,2016,61(24):2742-2756.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700