三种土壤条件下紫茎泽兰根际的酶活性及细菌群落状况
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enzyme activities and bacterial community in the rhizosphere of Eupatorium adenophorum under different soil conditions
  • 作者:刘海 ; 王玉书 ; 焦玉洁 ; 彭丽媛 ; 郭明全 ; 王勇 ; 陈玉蓝 ; 袁玲
  • 英文作者:LIU Hai;WANG Yushu;JIAO Yujie;PENG Liyuan;GUO Mingquan;WANG Yong;CHEN Yulan;YUAN Ling;College of Resources and Environment,Southwest University;Guizhou Agricultural Science and Technology Information Institute,Guizhou Academy of Agricultural Sciences;Liangshan Branch of Sichuan Tobacco Company;
  • 关键词:紫茎泽兰 ; 根际 ; 酶活性 ; 细菌 ; 群落结构
  • 英文关键词:Eupatorium adenophorum;;rhizosphere;;enzyme activity;;bacteria;;community structure
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西南大学资源环境学院;贵州省农业科学院农业科技信息研究所;四川省烟草公司凉山州公司;
  • 出版日期:2018-09-26 09:33
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:四川省烟草公司科技项目(201551340027159);; 中央高校基本科研业务费专项资金(XDJK2017D198);中央高校基本科研业务费专项资金(XDJK2017D204)
  • 语种:中文;
  • 页:STXB201823021
  • 页数:11
  • CN:23
  • ISSN:11-2031/Q
  • 分类号:192-202
摘要
紫茎泽兰被列为我国危害最严重的外侵植物,为探索其侵入机制,以四川省凉山州的3种主要土壤!红壤、黄壤和紫色土为研究对象,比较了根际和非根际土壤(距离根系约20 cm)的酶活性及细菌群落。结果表明,尽管土壤类型不同,根际酶活性(过氧化氢酶、酸性磷酸酶、脲酶和蔗糖酶)及微生物量碳氮显著高于非根际,说明紫茎泽兰的根系生命活动促进根际微生物生长繁殖,数量增加,活性增强,有益于土壤养分供应,促进紫茎泽兰生长,提高生存竞争优势。在不同类型的土壤中,紫茎泽兰根际细菌的分类单元数和主成分方差比非根际降低或无显著变化,说明紫茎泽兰对土壤细菌群落的影响因土壤而异。3种土壤的优势菌株种类差异极大,根际20种优势细菌中仅链霉菌1(Streptomyces 1)为共有菌株,非根际仅有绿弯菌(Chloroflexi KD4-96)为共有菌株,说明紫茎泽兰能在细菌群落不同的土壤上生长,具有极强的适应性。但是,3种土壤的优势细菌均为放线菌门、变形菌门和拟杆菌门,合计占细菌总量的60.69%—78.75%;就同一种土壤而言,根际20种优势细菌中有8—11株与非根际相同。因此,土壤类型是决定细菌群落的主要因素,但因紫茎泽兰入侵而发生一定程度的变化。
        Eupatorium adenophorum is a harmful invasive plant in China. To understand the invasion mechanisms,three soils widespread in Liangshan Prefecture,Sichuan Province,including red,yellow,and purple soils with prosperous E. adenophorum growth,were collected to study enzyme activities and bacterial communities in the rhizosphere and nonrhizosphere( about 20 cm from the roots). The results showed that enzyme activities such as catalase,acid phosphatase,urease,and sucrase,and microbial biomass carbon and nitrogen in the rhizosphere were significantly higher than that in the non-rhizosphere. Enhanced microbial growth and propagation resulting from E. adenophorum root metabolism activities couldincrease the numbers of microbes and stimulate their activities,which could benefit soil nutrient supply,resulting in the prosperous growth and strong competition of E. adenophorum in ecosystems. In the three tested soils,bacterial taxon types and principle component variances in the rhizosphere of E. adenophorum decreased or changed more narrowly than that in the non-rhizosphere,indicating that the effects of E. adenophorum on bacterial community structures varied with different soils. There were also huge differences in predominant bacteria among the three tested soils. Only Streptomyces-1 was common in the top 20 predominant bacteria in the rhizosphere of the three studied soils,and Chloroflexi KD4-96 was common in the non-rhizosphere. This suggests that E. adenophorum could grow well in various soils owing to a strong adaptability to environments. However,Actinobacteria,Proteobacteria,and Bacteroidetes were dominant in all studied soils,accounting for 60.69%—78.75% of the total bacteria. In each soil type,8—11 bacterial strains in top 20 predominant bacteria were commonly present in the rhizosphere or non-rhizosphere of E. adenophorum,suggesting that soil types were the main factor that governed bacterial communities,which could be changed to some extent by E. adenophorum invasion.
引文
[1]徐海根,强胜.中国外来入侵生物.北京:科学出版社,2011.
    [2]Jiang M X,Zhan A B,Guo H,Wan F H.Research and management of biological invasions in China:future perspectives//Wan F B,Jiang M X,Zhan A B,eds.Biological Invasions and Its Management in China.Singapore:Springer,2017:239-247.
    [3]Wang C,Lin H L,Feng Q S,Jin C Y,Cao A C,He L.A new strategy for the prevention and control of Eupatorium adenophorum under climate change in China.Sustainability,2017,9(11):2037.
    [4]朱先洲.入侵植物紫茎泽兰资源化利用研究进展.湖北农业科学,2012,51(14):2905-2907,2917-2917.
    [5]李霞霞,张钦弟,朱珣之.近十年入侵植物紫茎泽兰研究进展.草业科学,2017,34(2):283-292.
    [6]Zhu X Z,Li Y P,Feng Y L,Ma K P.Response of soil bacterial communities to secondary compounds released from Eupatorium adenophorum.Biological Invasions,2017,19(5):1471-1481.
    [7]Zhou P,Tang T X,Zhao P,Chen J W.Soil microbes and successful invasions of an exotic weed Eupatorium adenophorum L.Pakistan Journal of Botany,2016,48(2):753-762.
    [8]牛红榜,刘万学,万方浩.紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响.生态学报,2007,27(7):3051-3060.
    [9]于文清,刘万学,桂富荣,刘文志,万方浩,张利莉.外来植物紫茎泽兰入侵对土壤理化性质及丛枝菌根真菌(AMF)群落的影响.生态学报,2012,32(22):7027-7035.
    [10]牛红榜,刘万学,万方浩,刘波.紫茎泽兰根际土壤中优势细菌的筛选鉴定及拮抗性能评价.应用生态学报,2007,18(12):2795-2800.
    [11]万方浩,刘万学,郭建英,强胜,李保平,王进军,杨国庆,牛红榜,桂富荣,黄文坤,蒋智林,王文琪.外来植物紫茎泽兰的入侵机理与控制策略研究进展.中国科学:生命科学,2011,41(1):13-21.
    [12]祖元刚,高崇洋,王文杰,杨逢建,刘英,王敏,赵阳国.喜树替代紫茎泽兰过程中根际微生物群落特征.中国科学C辑生命科学,2006,36(5):459-467.
    [13]Zhu X Z,Li Y P,Feng Y L,Ma K P.Response of soil bacterial communities to secondary compounds released from Eupatorium adenophorum.Biological Invasions,2017,19(5):1471-1481.
    [14]Dong L M,Zhang M,Xu Q L,Zhang Q,Luo B,Luo Q W,Liu W B,Tan J W.Two new thymol derivatives from the roots of Ageratina adenophora.Molecules,2017,22(4):592.
    [15]朱珣之,李强,李扬苹,韩洪波,马克平.紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响.生物多样性,2015,23(5):665-672.
    [16]Li Y P,Feng Y L,Kang Z L,Zheng Y L,Zhang J L,Chen Y J.Changes in soil microbial communities due to biological invasions can reduce allelopathic effects.Journal of Applied Ecology,2017,54(5):1281-1290.
    [17]关松荫.土壤酶及其研究法.北京:中国农业出版社,1986.
    [18]Lim Y W,Kim B K,Kim C,Jung H S,Kim B S,Lee J H,Chun J.Assessment of soil fungal communities using pyrosequencing.The Journal of Microbiology,2010,48(3):284-289.
    [19]Zelles L.Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:A review.Biology and Fertility of Soils,1999,29(2):111-129.
    [20]罗希茜,郝晓晖,陈涛,邓婵娟,吴金水,胡荣桂.长期不同施肥对稻田土壤微生物群落功能多样性的影响.生态学报,2009,29(2):740-748.
    [21]陈丹梅,段玉琪,杨宇虹,晋艳,黄建国,袁玲.长期施肥对植烟土壤养分及微生物群落结构的影响.中国农业科学,2014,47(17):3424-3433.
    [22]Frostegrd ,Tunlid A,Bth E.Phospholipid fatty acid composition,biomass,and activity of microbial communities from two soil types experimentally exposed to different heavy metals.Applied and Environmental Microbiology,1993,59(11):3605-3617.
    [23]Schloss P D,Westcott S L,Ryabin T,Hall J R,Hartmann M,Hollister E B,Lesniewski R A,Oakley B B,Parks D H,Robinson C J,Sahl J W,Stres B,Thallinger G G,Van Horn D J,Weber C F.Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities.Applied and Environmental Microbiology,2009,75(23):7537-7541.
    [24]Herlemann D P R,Lundin D,Labrenz M,Jürgens K,Zheng Z L,Aspeborg H,Andersson A F.Metagenomic de novo assembly of an aquatic representative of the verrucomicrobial class spartobacteria.m Bio,2013,4(3):e00569-12.
    [25]周礼恺.土壤酶学.北京:科学出版社,1987.
    [26]李会娜,刘万学,万方浩.杀真菌剂对入侵植物紫茎泽兰与伴生植物生长的反馈作用.中国农业科学,2011,44(11):2269-2275.
    [27]戴莲,李会娜,蒋智林,万方浩,刘万学.外来植物紫茎泽兰入侵对根际土壤有益功能细菌群、酶活性和肥力的影响.生态环境学报,2012,21(2):237-242.
    [28]李会娜,刘万学,万方浩.紫茎泽兰和黄顶菊入侵对土壤微生物群落结构和旱稻生长的影响.中国生态农业学报,2011,19(6):1365-1371.
    [29]Sun X,Gao C,Guo L D.Changes in soil microbial community and enzyme activity along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest.Chinese Science Bulletin,2013,58(33):4101-4108.
    [30]Dick R P.Soil enzyme activities as integrative indicators of soil health//Pankhurst C,Doube B,Gupta V,eds.Biological Indicators of Soil Health.New York:CAB International,1997,9:121-156.
    [31]Alkorta I,Aizpurua A,Riga P,Albizu I,Amézaga I,Garbisu C.Soil enzyme activities as biological indicators of soil health.Reviews on Environmental Health,2003,18(1):65-73.
    [32]郝余祥.土壤微生物.北京:科学出版社,1982.
    [33]王金花,朱鲁生,王军,谢慧.4种典型抗生素对土壤微生物呼吸的影响.农业环境科学学报,2011,30(11):2232-2236.
    [34]滕应,黄昌勇,骆永明,李振高.重金属复合污染下红壤微生物活性及其群落结构的变化.土壤学报,2005,42(5):819-828.
    [35]Pan X Y,Xu S,Wu J,Luo J Y,Duan Y B,Wang J X,Zhang F,Zhou M G.Screening and characterization of Xanthomonas oryzae pv.oryzae strains with resistance to pheazine-1-carboxylic acid.Pesticide Biochemistry and Physiology,2018,145:8-14.
    [36]童克忠,李明鳯.枯草杆菌(Bacillus subtilis)链霉素座位的自发突变.微生物学报,1965,11(4):544-553.
    [37]Hennon G M M,Morris J J,Haley S T,Zinser E R,Durrant A R,Entwistle E,Dokland T,Dyhrman S T.The impact of elevated CO2on Prochlorococcus and microbial interactions with‘helper’bacterium Alteromonas.The ISME Journal,2018,12:520-531.
    [38]傅思武,邝欣,王棣,吴勇杰,陆俭,吕存女,孟筱琦.酪酸梭菌-婴儿型双歧杆菌二联益生菌制剂的初步研制.兰州医学院学报,2000,26(4):13-15.
    [39]Wyszkowska J,Boros-Lajszner E,Borowik A,Kucharski J,Bac'maga M,Tomkiel M.Changes in the microbiological and biochemical properties of soil contaminated with zinc.Journal of Elementology,2017,22(2):437-451.
    [40]陈继红,王富生,舒易强,杜丛伟.发光细菌法在水质综合毒性在线检测中的应用.环境工程学报,2013,7(10):4144-4148.
    [41]何新华,陈力耕,胡西琴,郭长禄.杨梅根瘤Frankia菌对重金属的抗性.水土保持学报,2003,17(3):127-129,143-143.
    [42]梁建强,段晓丹,崔广玲,唐静,朱闻斐,韦革宏.西北地区金属尾矿地根瘤菌的重金属抗性及其系统发育研究.农业环境科学学报,2009,28(6):1120-1126.
    [43]聂阳意,王海华,李晓杰,任寅榜,金昌善,徐自坤,吕茂奎,谢锦升.武夷山低海拔和高海拔森林土壤有机碳的矿化特征.应用生态学报,2018,29(3):748-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700