不同结构表面活性剂在有机非水相中的发泡性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on the foaming properties of surfactants with different structure in organic solvents
  • 作者:燕永利
  • 英文作者:YAN Yong-Li;College of Chemistry & Chemical Engineering,Xi'an Shiyou University;
  • 关键词:表面活性 ; 有机非水相溶剂 ; 溶剂极性 ; 起泡性能 ; 稳定性
  • 英文关键词:surfactant;;non-aqueous solvent;;solvent polarity;;foaming properties;;stability
  • 中文刊名:CHEM
  • 英文刊名:China Surfactant Detergent & Cosmetics
  • 机构:西安石油大学化学化工学院;
  • 出版日期:2019-07-22
  • 出版单位:日用化学工业
  • 年:2019
  • 期:v.49;No.323
  • 基金:国家自然科学基金资助项目(21773183);; 陕西省自然科学研究计划资助(2018JM2011)
  • 语种:中文;
  • 页:CHEM201907004
  • 页数:6
  • CN:07
  • ISSN:14-1320/TQ
  • 分类号:23-28
摘要
研究不同有机非水相溶剂在不同结构类型表面活性剂作用下的起泡性能。利用泡沫衰减法测定不同有机非水相溶液体系的发泡体积和泡沫稳定性,并分析其表面张力、黏度、溶剂极性对有机非水相溶液体系起泡性能的影响。结果表明,无论阴离子、非离子,还是两性表面活性剂在正构烷烃和芳香烃溶剂中均不起泡,只有部分在液体石蜡和甘油中产生泡沫。液体石蜡和甘油中所形成的泡沫含气率分别为66.6%~83.3%和72.2%~83.7%,半衰期分别为0.21~1.44 min和1.79~16.69 min,其中发泡剂AEO-3和OBS分别在液体石蜡和甘油溶剂中发泡性能较佳。研究发现有机非水相溶剂极性越大,其溶液起泡性能愈佳;而有机非水相表面活性剂溶液黏度仅与泡沫稳定性有关,非水相溶液体系表面张力的降低与其发泡性能之间未能展现出密切的关联。
        The foaming properties for various organic solvents in the presence of surfactants with diverse structure were investigated. The foam volume and foam stability were determined by a foam attenuation method. The effects of surface tension, viscosity and solvent polarity on foaming properties were also analyzed. The experimental results showed that the anionic, nonionic and amphoteric surfactants under investigation could not produce foams in n-alkanes and aromatic hydrocarbons, while some of them only form foams in liquid paraffin and glycerin.The volume fractions of gas in foams for liquid paraffin and glycerin range from 66.6% to 83.3% and 72.2% to83.7%, respectively, while the half-lives range from 0.21 to 1.44 min and 1.79 to 16.69 min, respectively. The best foaming agents are AEO-3 for liquid paraffin and OBS for glycerin. It can be concluded that the greater the polarity of the organic solvent, the better is its foaming capacity. The viscosity is only related to the stability of the foam formed from these solutions, and it is found that the decrease of surface tension of the non-aqueous solutions is not closely related to its foaming performance.
引文
[1]Schramm L L.Emulsions,foams,and suspensions:fundamentals and applications[M].Weinheim:Wiley-VCH,2005,231-357.
    [2]Yan Y L.Advances in the foaming and stabilization mechanisms of non-aqueous systems[J].Applied Chemical Industry,2016,45:2135-2138.
    [3]Zuo L L,Xing X K,Ning W Y,et al.Research progress on generation and stability of crude oil foams[J].Oilfield Chemistry,2016,33:745-749.
    [4]Ren F X,Sun H J,Hu C H.Heavy oil development technology and practices in Liaohe oilfield[J].Special Oil and Gas Reservoirs,2012,19(1):17-22.
    [5]Shivhare S,Kuru E.A study of the pore-blocking ability and formation damage characteristics of oil-based colloidal gas aphron drilling fluids[J].Journal of Petroleum Science and Engineering,2014,122:257-266.
    [6]Patel A R.Stable‘arrested’non-aqueous edible foams based on food emulsifiers[J].Food&Function,2017,8:2115-2120.
    [7]Peng N H.The foaming agents for removing water from gas wells[J].Oilfield Chemistry,1989,6(1):84-89.
    [8]Yang J,Jovancicevic V,Ramachandran S.Foam for gas well deliquification[J].Colloids Surfaces A:Physicochemical and Engineering Aspects,2007,309:177-181.
    [9]Dong X,Liu H,Sun P,et al.Air-foam-injection process:an improvedoil-recovery technique for water flooded light-oil reservoirs[J].SPE Reservoir Evaluation&Engineering,2012,15:436-444.
    [10]Lin Y M,Xiang L,Huang Y Z.Research and application of new types of foam fracturing fluid[J].Drilling&Production Technology,2010,33(4):99-102.
    [11]Tan X,Sun J S,Xu X G,et al.A study on the oil-based foam drilling fluid technique[J].Acta Petrolei Sinica,2010,31:829-833.
    [12]Xu G Y.Cause analysis and countermeasures of oil foaming in equipment oil tank[J].Machinery,1998(9):29-31.
    [13]Li R F,Yan W,Liu S,et al.Foam mobility control for surfactant enhanced oil recovery[J].SPE Journal,2010,15:934-948.
    [14]Qian Y,Zhang S F,Wu J Z,et al.Foam stability and effecting factors of foam combination flooding[J].Petroleum Geology&Oilfield Developmentin Daqing,2001,20(2):33-36.
    [15]Zhao J X.Complicated reverse aggregates of surfactants in non-polar organic solvents[J].Progress in Chemistry,2015,27:168-173.
    [16]King G E.Foam formation in organic liquids[J].Journal of Physical Chemistry,1944,48:141-154.
    [17]Robinson J V,Woods W W.Foaming of mixtures of hydrocarbons[J].Journal of Physical Chemistry,1948,52:763-766.
    [18]Liu D J,Ma J M,Cheng H M,et al.Aggregation behavior of mixed surfactants in apolar solvent[J].Chinese Journal of Applied Chemistry,1997,14(6):51-53.
    [19]Jia X G,Yan Y L,Qu C T,et al.Progress in study of effect of crude oil on stability of aqueous foam[J].China Surfactant Detergent&Cosmetics,2010,40(1):54-59.
    [20]Hu X Y,Song X W,Li Q W,et al.Molecular simulation study of foam formation ability[J].Acta Chimica Sinica,2009,67:1691-1694.
    [21]Blázquez C,Emond E,Schneider S,et al.Non-aqueous and crude oil foams[J].Oil&Gas Science and Technology,2014,69:467-479.
    [22]Friberg S E.Foams from non-aqueous systems[J].Current Opinion Colloid&Interface Science,2010,15:359-364.
    [23]Binks B P,Garveya E J,Vieira J.Whipped oil stabilised by surfactant crystals[J].Chemical Science,2016,7(4):2621-2632.
    [24]Fameau A,Saint J A.Non-aqueous foams:current understanding on the formation and stability mechanisms[J].Advances in Colloid and Interface Science,2017,247:454-464.
    [25]Cheng N L.Solvent manual[M].Beijing:Chemical Industry Press,2007,1221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700