活塞环形油腔振荡冷却周向换热特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Circumferential Cooling Heat Transfer of Piston Ring Oil Cavity
  • 作者:吴志明 ; 明平剑
  • 英文作者:Wu Zhiming;Ming Pingjian;College of Power and Energy Engineering,Harbin Engineering University;
  • 关键词:活塞 ; 振荡冷却 ; 周向换热
  • 英文关键词:piston;;oscillatory cooling;;circumferential heat transfer
  • 中文刊名:NRJX
  • 英文刊名:Transactions of CSICE
  • 机构:哈尔滨工程大学动力与能源工程学院;
  • 出版日期:2018-07-25
  • 出版单位:内燃机学报
  • 年:2018
  • 期:v.36;No.178
  • 基金:国家自然科学基金资助项目(51206031,51479038);; 中央高校基本科研业务费重大资助项目(HEUCFP201711)
  • 语种:中文;
  • 页:NRJX201804010
  • 页数:9
  • CN:04
  • ISSN:12-1086/TK
  • 分类号:76-84
摘要
为研究柴油机活塞环形油腔周向振荡冷却特性,在非惯性坐标系下应用流体体积函数(VOF)多相流模型,对活塞环形油腔振荡冷却进行了瞬态换热研究,得到了环形油腔周向壁面平均换热系数的变化规律,发现壁面平均换热系数的振荡幅度最大的并不是入口冲击的周向10°区域,而是周向20°区域.一个周期内油腔周向区域的壁面平均换热系数整体呈类"对数"减小的趋势,在周向10°~30°区域急剧减小,而后随着远离入口段,其值呈现先增大后减小的变化规律.最后通过两种方法计算活塞温度场并进行对比,发现使用18周向区域的壁面平均换热系数所计算的活塞温度场的顶部温度波动更大,更符合实际情况.
        The VOF multiphase flow model was used to study the oscillatory cooling of the piston oil cavity in the non-inertial coordinate system.It is found that the maximum amplitude of the wall heat transfer coefficient appears not on the circumferential 10 degree region of the entrance but on the circumferential 20 degree region.The average heat transfer coefficient of the circumference area shows a tendency to decrease with a alike logarithmic step in one cycle.The wall heat transfer coefficient in the circumferential area of 10 degrees to 30 degrees is sharply reduced,and then the value increases first and then decreases with the distance away from the entrance section.The temperature oscillatory on the piston top calculated by the heat transfer coefficient of 18 zones in the circumference is larger but more realistic.
引文
[1]吴伋.船用柴油机燃烧室组件的流固耦合传热研究与活塞强度分析[D].大连:大连海事大学轮机工程学院,2014.
    [2]李闯,张翼,蔡强.冷却油腔形状对活塞温度场影响[J].煤矿机械,2016,3:82-85.
    [3]原彦鹏,王月,张卫正,等.冷却油腔位置改变对活塞温度场的影响[J].北京理工大学学报,2008,28(7):585-588.
    [4]Chang S W,Su L M,Yang T L,et al.Heat transfer in a reciprocating duct fitted with transverse ribs[J].Experimental Heat Transfer,1999,12(2):95-115.
    [5]Chang S W,Cai Z X.Heat transfer and pressure drop in a reciprocating blind duct with swirls generated by a lateral entry jet[J].Experimental Thermal and Fluid Science,2011,35(6):1067-1085.
    [6]Kajiwara H,Fujioka Y,Negishi H,et al.Prediction of temperatures on pistons with cooling gallery in diesel engines using CFD tool[C]//SAE Paper.Detroit,Michigan,USA,2003,2003-01-0986.
    [7]Bush J E,London A L.Design data for cocktail shaker cooled pistons and valves[C]//SAE Paper.Detroit,Michigan,USA,1965,650727.
    [8]French C C J.Piston cooling[C]//SAE Paper.Detroit,Michigan,USA,1972,720024.
    [9]Chang S W.Forced heat convection in a reciprocating duct fitted with 45 degree crossed ribs[J].International Journal of Thermal Sciences,2002,41(3):229-240.
    [10]Yang T L,Chang S W.Heat transfer in tilted reciprocating antigravity open thermosphon[J].International Journal of Heat and Mass Transfer,2009,52(3-4):880-893.
    [11]张卫正,曹元福,原彦鹏,等.基于CFD的活塞振荡冷却的流动与传热仿真研究[J].内燃机学报,2010,28(1):74-78.
    [12]曹元福,张卫正,杨振宇,等.封闭空腔中多相流振荡传热特性的数值模拟[J].化工学报,2013,64(3):891-896.
    [13]仲杰.活塞喷油振荡冷却的稳、瞬态模拟计算及活塞温度场分析[D].济南:山东大学能源与动力工程学院,2012.
    [14]黄泽辉.活塞振荡油腔换热边界条件的试验研究[D].济南:山东大学能源与动力工程学院,2015.
    [15]Wang P,Lv J Z,Bai M L,et al.The reciprocating motion characteristics of nanofluid inside the piston cooling gallery[J].Powder Technology,2015,274:402-417.
    [16]王鹏,吕继组,白敏丽,等.金刚石纳米流体强化活塞冷却油腔传热的数值模拟[J].内燃机学报,2013,4(31):360-366.
    [17]焦亚飞.柴油机活塞振荡冷却过程射流流动与传热机理研究[D].哈尔滨:哈尔滨工程大学动力与能源工程学院,2015.
    [18]Pan J,Nigro R,Matsuo E.3-D modeling of heat transfer in diesel engine piston cooling galleries[C]//SAE Paper.Detroit,Michigan,USA,2005,2005-01-1644.
    [19]Nozawa Y,Noda T,Yamada T.Development of techniques for improving piston cooling performance(first report):Measurement of heat absorption characteristics by engine oil in cooling channel[C]//SAE Paper.Yokohama,Japan,2005.
    [20]Nozawa Y,Noda T,Yamada T.Development of techniques for improving piston cooling performance(second report):oil movement and heat transfer simulation in piston cooling channel with CFD[C]//SAE Paper.Yokohama,Japan,2005.
    [21]吴倩文,张敬晨,庞铭,等.活塞振荡冷却的数值模拟计算及温度场分析[J].车用发动机,2015,4(219):54-59.
    [22]陈靠.活塞二阶运动分析及敲击噪声预测[D].哈尔滨:哈尔滨工程大学动力与能源工程学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700