蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记:来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Imprints of fluid process of shell dunite in ophiolitic chromite deposits:evidences from geology,petrology and crystal chemistry of olivine found in Luobusa and Zedang ophiolites in the Yarlung Zangbo suture zone,Tibet
  • 作者:罗照华 ; 江秀敏 ; 刘晓 ; 李重 ; 吴宗昌 ; 井文超
  • 英文作者:LUO Zhaohua;JIANG Xiumin;LIU Xiao;LI Zhong;WU Zongchang;JING Wenchao;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;
  • 关键词:包壳纯橄榄岩 ; 豆荚状铬铁矿 ; 橄榄石 ; 熔体-流体流 ; 西藏罗布莎蛇绿岩
  • 英文关键词:shell dunite;;podiform chromitites;;olivine;;melt-fluid flow;;Luobusa ophiolite,Tibet
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学地质过程与矿产资源国家重点实验室;
  • 出版日期:2018-01-26 14:38
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.135
  • 基金:中国地质调查局地质大调查项目(121201102000150069-01,1212011220921);; 青海省地质调查研究院项目(QHDDY201401)
  • 语种:中文;
  • 页:DXQY201901028
  • 页数:14
  • CN:01
  • ISSN:11-3370/P
  • 分类号:276-289
摘要
岩浆型矿床一般认为是岩浆分异的产物,因为这类矿床通常缺乏强烈的近矿围岩蚀变。蛇绿岩中的豆荚状铬铁矿被认为是一种典型的岩浆型矿床,流行的成因模型包括岩浆通道模型和熔体-岩石反应模型。深部晶体群的大量发现,表明铬铁矿成矿系统不是一种理想系统,而是至少由两类子系统组成的复杂性动力系统。因此,流行模型不再适用,必须构建能够整合新证据的成因模型。这类矿床的典型地质特征是具有从方辉橄榄岩围岩经包壳纯橄榄岩到铬铁矿石的分带,且包壳纯橄榄岩与铬铁矿之间为渐变接触关系,包壳纯橄榄岩与方辉橄榄岩之间既可以为渐变接触关系,也可以为截然接触关系或侵入接触关系。因此,阐明纯橄榄岩的成因是理解豆荚状铬铁矿形成机制的关键。西藏雅鲁藏布江缝合带中罗布莎和泽当两个代表性超镁铁质杂岩体的新观察揭示:(1)包壳纯橄榄岩的出露宽度变化于厘米级到百米级,但岩石具有均匀的细粒结构,流行模型难以解释;(2)包壳纯橄榄岩可以划分为至少两种构造类型:块状纯橄榄岩和片理化纯橄榄岩,暗示了纯橄榄岩形成过程的多阶段特点;(3)包壳纯橄榄岩主要由变晶橄榄石组成,仅含有少量由熔体或流体析出的橄榄石晶体;(4)与方辉橄榄岩相比,包壳纯橄榄岩中的橄榄石具有高MgO、Cr2O3、CaO和低MnO、Al2O3的特点,展示了矛盾的晶体化学特征;(5)邻近铬铁矿体的纯橄榄岩中常见反豆状结构,类似于多相稀释流体流体制中紊流产生的中尺度结构。上述看似矛盾的证据表明包壳纯橄榄岩的形成过程有大量深部流体的参与,因而流体过程可以作为构建一个新的整合模型的基础。据此,文中提出一个熔体-流体流模型,其基本机制是溶解-沉淀反应Opx+Fluid→Ol±Sp±Cpx±Pl±SiO2(fluid),而基本前提则是深部还原流体的持续供给和熔体-流体流的快速上升。此外,文中还表明,依据火成岩地质学、岩石学和名义无水矿物晶体化学证据也可以再造岩浆系统的流体过程。
        Magmatic deposits are generally regarded as the product of magmatic differentiation for lack of strong near-ore wall rock alteration.Ophiolitic podiform chromite deposits are typical magmatic deposits.Popular genetic models of podiform chromitities include the magma channel model and melt-rock interaction model.However,the discovery of a massive deep seated crystal population,indicated the chromite ore system is not an ideal but complex dynamic system with at least two subsystems.A different genetic model,therefore,is needed to account for the new evidences.One characteristic feature of chromite deposits is the zoning from harzburgite wall rock,through shell dunite,to chromitite,with progressive contacts between dunite and chromitite,and abrupt,progressive or intrusive contacts between shell dunite and harzburgite.Thus,the origin of dunite is key to the understanding of formation mechanism of podiform chromitities.The recent observations of two typical ultramafic complexes in Luobusa and Zedang in the Yarlung Zangbo suture zone revealed:(1)the width of shell dunite varies from centimeters to hundred meters,but the rock's uniform fine-grained structure can not be explained by the popular models;(2)shell dunite can be classified into massive and schistose structures,which implies a multi-stage process in dunite formation;(3)shall dunite mainly consists of blastic olivine,with few olivine crystals crystallized from melt or fluid;(4)in contrast to harzburgite,olivine crystals in shell dunite are characterized by high MgO,Cr2O3,CaO and low MnO,Al2O3contents-two contradictory features;and(5)the anti-podiform texture,commonly found in dunite near the chromite ore body,resembles the mesoscale texture formed by turbulence in the multi dilute fluid flow.These seemingly contradictory observations suggest that dunite formation involves a deep seated fluid mass,hence fluid process could be a basis for building a new model.Based on this assumption,we proposed here a melt-fluid flow model,its mechanism is the dissolution-precipitation reaction:Opx+Fluid→Ol±Sp±Cpx±Pl±SiO2(fluid);the basic preconditions for the mechanism are continuous supply of deep fluid and rapid rise of melt-fluid flow.In this paper we also demonstrated that evidences from igneous geology,petrology and crystal chemistry of nominally anhydrous minerals can be used to rebuild the fluid state of a magma.
引文
[1] BUREAU H,KEPPLER H.Complete miscibility between silicate melts and hydrous fluids in the upper mantle:experimental evidence and geochemical implications[J].Earth and Planetary Science Letters,1999,165(2):187-196.
    [2] THOMAS R,DAVIDSON P.Revisiting complete miscibility between silicate melts and hydrous fluids,and the extreme enrichment of some elements in the supercritical state:consequences for the formation of pegmatites and ore deposits[J].Ore Geology Reviews,2016,72:1088-1101.
    [3] PLANK T,KELLEY K A,ZIMMER M M,et al.Why do mafic arc magmas contain~4wt%water on average?[J].Earth and Planetary Science Letters,2013,364:168-179.
    [4] RUTHERFORD M J.Magma ascent rates[J].Reviews in Mineralogy and Geochemistry,2008,69(1):241-271.
    [5] CASSARD D,NICOLAS A,RABINOVITCH M,et al.Structural classification of chromite pods in southern New Caledonia[J].Economic Geology,1981,76:805-831.
    [6] LAGO B L,RABINOWICZ M,NICOLAS A.Podiform chromite ore bodies:agenetic model[J].Journal of Petrology,1982,23(1):103-125.
    [7] MATVEEV S,BALLHAUS C.Role of water in the origin of podiform chromitite deposits[J].Earth and Planetary Science Letters,2002,203(1):235-243.
    [8] GONZLEZ-JIMNEZ J M,GRIFFIN W L,GERVILLA F,et al.Chromitites in ophiolites:how,where,when,why?PartⅠ.A review and new ideas on the origin and signifi-cance of platinum-group minerals[J].Lithos,2014,189:127-139.
    [9] GONZLEZ-JIMNEZ J M,GRIFFIN W L,PROENZA J A,et al.Chromitites in ophiolites:how,where,when,why?PartⅡ.The crystallization of chromitites[J].Lithos,2014,189:140-158.
    [10] ZHOU M F,ROBINSON P T.High-Cr and high-Al podiform chromitites, Western China:relationship to partial melting and melt/rock reaction in the upper mantle[J].International Geology Review,1994,36(7):678-686.
    [11] ZHOU M F,ROBINSON P T,SU B X,et al.Compositions of chromite,associated minerals,and parental magmas of podiform chromite deposits:the role of slab contamination of asthenospheric melts in suprasubduction zone environments[J].Gondwana Research,2014,26(1):262-283.
    [12]杨经绥,白文吉,方青松,等.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述)[J].地球学报,2008(3):263-274.
    [13]杨经绥,张仲明,李天福,等.西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物[J].岩石学报,2008(7):1445-1452.
    [14] ZHOU M F,ROBINSON P T,MALPAS J,et al.Podiform chromitites in the Luobusa ophiolite(Southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J].Journal of Petrology,1996,37(1):3-21.
    [15] IRVINE T.Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions:a new interpretation[J].Geology,1977,5(5):273-277.
    [16] KELEMEN P B,DICK H J,QUICK J E.Formation of harzburgite by pervasive melt/rock reaction in the upper mantle[J].Nature,1992,358(6388):635-641.
    [17] EDWARDS S J,MALPAS J.Melt-peridotite interactions in shallow mantle at the East Pacific Rise:evidence from ODP Site 895(Hess Deep)[J].Mineralogical Magazine,1996,60(1):191-206.
    [18] SUHR G,SECK H,SHIMIZU N,et al.Infiltration of refractory melts into the lowermost oceanic crust:evidence from dunite-and gabbro-hosted clinopyroxenes in the Bay of Islands Ophiolite[J].Contributions to Mineralogy and Petrology,1998,131(2/3):136-154.
    [19] TURSACK E,LIANG Y.A comparative study of melt-rock reactions in the mantle:laboratory dissolution experiments and geological field observations[J].Contributions to Mineralogy and Petrology,2012,163(5):861-876.
    [20] SHAW C S,THIBAULT Y,EDGAR A D,et al.Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1atmosphere and implications for the origin of silica-rich glass in mantle xenoliths[J].Contributions to Mineralogy and Petrology,1998,132(4):354-370.
    [21] SHAW C S.Dissolution of orthopyroxene in basanitic magma between 0.4and 2GPa:further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths[J].Contributions to Mineralogy and Petrology,1999,135(2/3):114-132.
    [22] SEYLER M,LORAND J P,DICK H J,et al.Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge,15°20′N:ODP Hole 1274A[J].Contributions to Mineralogy and Petrology,2007,153(3):303-319.
    [23] KIMURA J I,SANO S.Reactive melt flow as the origin of residual mantle lithologies and basalt chemistries in mid-ocean ridges:implications from the Red Hills peridotite,New Zealand[J].Journal of Petrology,2012,53(8):1637-1671.
    [24]张浩勇,巴登珠,郭铁鹰,等.西藏自治区曲松县罗布莎铬铁矿床研究[M].拉萨:西藏人民出版社,1996:1-181.
    [25]李德东,罗照华,周久龙,等.岩墙厚度对成矿作用的约束:以石湖金矿为例[J].地学前缘,2011,18(1):166-178.
    [26] CARICCHI L,BURLINI L,ULMER P,et al.Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics[J].Earth and Planetary Science Letters,2007,264(3/4):402-419.
    [27] VIGNERESSE J L.Textures and melt-crystal-gas interactions in granites[J].Geoscience Frontiers,2015,6(5):635-663.
    [28] BURGISSER A,BERGANTZ G W,BREIDENTHAL R E.Addressing complexity in laboratory experiments:the scaling of dilute multiphase flows in magmatic systems[J].Journal of Volcanology and Geothermal Research,2005,141(3/4):245-265.
    [29]梁凤华,杨经绥,许志琴,等.铬在橄榄石中的赋存状态:西藏罗布莎地幔橄榄岩和铬铁矿中的富铬橄榄石及对深部地幔成因的启示[J].岩石学报,2014,30(8):2125-2136.
    [30] GRANT T B,HARLOV D E,RHEDE D.Experimental formation of pyroxenite veins by reactions between olivine and Si,Al,Ca,Na,and Cl-rich fluids at 800℃and 800MPa:implications for fluid metasomatism in the mantle wedge[J].American Mineralogist,2016,101(4):808-818.
    [31] AGEE C B,WALKER D.Aluminum partitioning between olivine and ultrabasic silicate liquid to 6GPa[J].Contributions to Mineralogy and Petrology,1990,105(3):243-254.
    [32] DAVIDSON P M,MUKHOPADHYAY D K.Ca-Fe-Mg olivines:phase relations and a solution model[J].Contributions to Mineralogy and Petrology,1984,86(3):256-263.
    [33] COOGAN L,SAUNDERS A,WILSON R.Aluminum-inolivine thermometry of primitive basalts:evidence of an anomalously hot mantle source for large igneous provinces[J].Chemical Geology,2014,368:1-10.
    [34] RAJESH V,ARAI S,SATISH-KUMAR M,et al.High-Mg low-Ni olivine cumulates from a Pan-African accretionary belt in southern India:implications for the genesis of volatile-rich high-Mg melts in suprasubduction setting[J].Precambrian Research,2013,227:409-425.
    [35] KLEIN-BENDAVID O,PETTKE T,KESSEL R.Chromium mobility in hydrous fluids at upper mantle conditions[J].Lithos,2011,125(1):122-130.
    [36] BACHMANN O,BERGANTZ G W.Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies[J].Journal of Volcanology and Geothermal Research,2006,149(1/2):85-102.
    [37] BURGISSER A,BERGANTZ G W.A rapid mechanism to remobilize and homogenize highly crystalline magma bodies[J].Nature,2011,471(7337):212-215.
    [38]罗照华,刘翠,李德东,等.岩浆热液成矿理论失败的原因[J].矿床地质,2010,29(增刊):1115-1116.
    [39] PARMIGIANI A,HUBER C,BACHMANN O.Mush microphysics and the reactivation of crystal-rich magma reservoirs[J].Journal of Geophysical Research:Solid Earth,2014,119(8):6308-6322.
    [40] MTRICH N,WALLACE P J.Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J].Reviews in Mineralogy and Geochemistry,2008,69(1):363-402.
    [41] WATERS L E,LANGE R A.An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites[J].American Mineralogist,2015,100(10):2172-2184.
    [42] NORTON D,TAYLOR H.Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data:an analysis of the Skaergaard intrusion[J].Journal of Petrology,1979,20(3):421-486.
    [43] GRIFFIN W,AFONSO J,BELOUSOVA E,et al.Mantle recycling:transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications[J].Journal of Petrology,2016,57(4):655-684.
    [44] FOLEY S F.A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time[J].Journal of Petrology,2011,52(7/8):1363-1391.
    [45] LITASOV K D,SHATSKIY A,OHTANI E.Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3-16GPa[J].Earth and Planetary Science Letters,2014,391:87-99.
    [46]黑慧欣,罗照华,VIKENTYEV I V,等.透岩浆流体作用与矿田构造[J].地质力学学报,2015(1):1-12.
    [47] YANG J S,DOBRZHINETSKAYA L,BAI W J,et al.Diamond-and coesite-bearing chromitites from the Luobusa ophiolite,Tibet[J].Geology,2007,35(10):875-878.
    [48]杨经绥,白文吉,方青松,等.极地乌拉尔豆荚状铬铁矿中发现金刚石和一个异常矿物群[J].中国地质,2007(5):950-952.
    [49] SPIEGELMAN M,KELEMEN P B.Extreme chemical variability as a consequence of channelized melt transport[J].Geochemistry,Geophysics,Geosystems,2003,4(7).DOI:10.1029/2002GC000336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700