超(超)临界火电用新型奥氏体不锈钢的高温塑性变形行为及本构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plastic deformation behavior and constitutive model of new austenitic stainless steel at high temperature used for ultra super critical power plant
  • 作者:程晓农 ; 王皎 ; 罗锐 ; 朱晶晶 ; 杨雨童 ; 郑琦
  • 英文作者:CHENG Xiao-nong;WANG Jiao;LUO Rui;ZHU Jing-jing;YANG Yu-tong;ZHENG Qi;School of Materials Science and Engineering,Jiangsu University;
  • 关键词:奥氏体不锈钢 ; 高温塑性变形行为 ; 流变应力 ; 本构模型 ; 应变量耦合
  • 英文关键词:austenitic stainless steel;;plastic deformation behavior at high temperature;;flow stress;;constitutive model;;coupling with strain
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:江苏大学材料科学与工程学院;
  • 出版日期:2018-08-28
  • 出版单位:塑性工程学报
  • 年:2018
  • 期:v.25;No.131
  • 基金:国家高技术研究发展计划(863计划)(2012AA03A501);; 江苏省重点实验室开放课题(hsm1304)
  • 语种:中文;
  • 页:SXGC201804018
  • 页数:7
  • CN:04
  • ISSN:11-3449/TG
  • 分类号:128-134
摘要
利用Gleeble-3500热模拟试验机对新型奥氏体不锈钢CHDG-A进行单道次压缩试验,研究了该合金在950~1100℃和0.01~1 s~(-1)条件下的流变应力变化规律及变形组织演变规律。建立了新型奥氏体不锈钢CHDG-A的传统Arrhenius本构模型,耦合应变量后建立改进型本构模型,并引进相关系数R、平均相对误差δ评估改进型本构模型的预测精度。结果表明:在高温热变形过程中,新型奥氏体不锈钢CHDG-A的流变应力值受应变速率以及变形温度的影响显著,且动态再结晶更易在较低应变速率、较高变形温度条件下发生;应用改进型本构模型得到的流变应力预测值与试验值间的相关系数R为0.9944,而平均相对误差值δ仅为1.9952%,说明该本构模型能较好的预测新型奥氏体不锈钢CHDG-A的流变应力。
        The change law of flow stress and evolution law of deformed microstructure at 950~(-1)100 ℃ and 0. 01-1 s~(-1) of new austenitic stainless steel CHDG-A were studied by Gleeble-3500 thermol-simulation machine. Traditional Arrhenius constitutive model of new austenitic stainless steel CHDG-A was established. And the modified constitutive model was built coupling with strain. The correlation coefficient R and average relative error δ were introdued to evaluate the accuracy of the modified constitutive model. Results show that the stress of new austenitic stainless steel CHDG-A is influenced by strain rate and deformation temperature significantly,and the dynamic recrystallization is more likely to occur at lower strain rate and higher temperature. The correlation coefficient R and average relative error δ between the predicted value of flow stress and the test value obtained by applying the modified constitutive model are 0. 9944 and 1. 9952%,respectively,which indicates that the constitutive model can accurately predict the flow stress of new austenitic stainless steel CHDG-A.
引文
[1]LI Y H,WANG S Z,SUN P P,et al.Early oxidation of super304H stainless steel and its scales stability in supercritical water environments[J].International Journal of Hydrogen Energy,2016,41(35):15764-15771.
    [2]孙玉梅,邹小平.Super304H不锈钢锅炉管评述[J].锅炉技术,2007,38(1):52-55.SUN Yumei,ZOU Xiaoping.The comment of super304H stainless steel boiler tube[J].Boiler Technology,2007,38(1):52-55.
    [3]赵林,董显平,孙锋,等.Super304H超超临界锅炉过热器管长期服役后的显微组织及力学性能[J].机械工程材料,2013,37(7):28-32,42.ZHAO Lin,DONG Xianpin,SUN Feng,et al.Microstructure and mechanical properties of super304H ultra supercritical pressure boiler superheater tube after serving for a long time[J].Materials for Mechanical Engineering,2013,37(7):28-32,42.
    [4]潘家栋,王家庆,陈国宏,等.Super304H耐热钢的热稳定性[J].中国科技论文,2012,7(2):95-100.PAN Jiadong,WANG Jiaqing,CHEN Guohong,et al.Thermal stability of super304H heat-resistant steel[J].China Sciencepaper,2012,7(2):95-100.
    [5]陈祖伟,戴起勋,李冬升,等.Cr18Ni9Cu3Nb N奥氏体不锈钢的性能研究[J].金属热处理,2010,35(10):52-55.CHEN Zuwei,DAI Qixun,LI Dongsheng,et al.Properties of Cr18Ni9Cu3Nb N austenitic stainless steel[J].Heat Treatment of Metals,2010,35(10):52-55.
    [6]李冬升,戴起勋,程晓农,等.奥氏体不锈钢Cr18Ni3Mn11Cu3Nb N高温抗氧化性能[J].材料热处理学报,2011,32(8):143-146.LI Dongsheng,DAI Qixun,CHENG Xiaonong,et al.High-temperature oxidation behavior of austenitic stainless steel Cr18Ni3Mn11Cu3Nb[J].Transactions of Materials and Heat Treatment,2011,32(8):143-146.
    [7]程晓农,王铖,张楠,等.新型Cr18Ni9Nb Ti N奥氏体不锈钢的高温蠕变行为[J].金属热处理,2016,41(3):114-118.CHENG Xiaonong,WANG Cheng,ZHANG Nan,et al.High temperature creep behavior of a novel Cr18Ni9Nb Ti N austenitic stainless steel[J].Heat Treatment of Metals,2016,41(3):114-118.
    [8]程晓农,张瑜,李冬升,等.新型USC锅炉管用CHDG-A06合金的晶间腐蚀敏感性[J].金属热处理,2015,40(6):11-15.CHENG Xiaonong,ZHANG Yu,LI Dongsheng,et al.Intergranular corrosion susceptibility of a novel CHDG-A06 alloy for USC boiler pipe[J].Heat Treatment of Metals,2015,40(6):11-15.
    [9]王铖.超超临界火电传热管用新型奥氏体不锈钢的高温蠕变性能[D].镇江:江苏大学,2015.WANG Cheng.High temperature creep properties of a new austenitic stainless steel applied in heat-exchangers of ultra-super critical thermal power scale[D].Zhenjiang:Jiangsu University,2015.
    [10]张雪敏,曹福洋,岳红彦,等.TC11钛合金热变形本构方程的建立[J].稀有金属材料与工程,2013,42(5):937-941.ZHANG Xuemin,CAO Fuyang,YUE Hongyan,et al.Establishment of constitutive equations of TC11 alloy during hot deformation[J].Rare Metal Material and Engineering,2013,42(5):937-941.
    [11]LIN Y C,CHEN M S,ZHANG J.Modeling of flow stress of42Cr Mo steel under hot compression[J].Materials Science&Engineering A,2009,499(1-2):88-92.
    [12]张思远,毛小南,戚运莲,等.β-CEZ钛合金热变形本构关系的研究[J].热加工工艺,2016,45(1):108-112.ZHANG Siyuan,MAO Xiaonan,QI Yunlian,et al.Study on constitutive relationship ofβ-CEZ titanium alloy during hot deformation[J].Hot Working Technology,2016,45(1):108-112.
    [13]张所全,汪凌云,黄光胜,等.2A70铝合金热变形应力行为研究[J].轻合金加工技术,2005,33(10):46-49.ZHANG Suoquan,WANG Lingyun,HUANG Guangsheng,et al.Study on flow stress of 2A70 aluminum alloy under hot deformation[J].Light Alloy Fabrication Technology,2005,33(10):46-49.
    [14]HAGHDADI N,ZAREI-HANZAKI A,ABEDI H R.The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain[J].Materials Science&Engineering A,2012,535(7):252-257.
    [15]孙朝阳,刘金榕,李瑞,等.Incoloy 800H高温变形流动应力预测模型[J].金属学报,2011,42(2):191-196.SUN Chaoyang,LIU Jinrong,LI Rui,et al.Constitutive modeling for elevated temperature flow behavior of Incoloy 800H superalloy[J].Acta Metallurgica Sinica,2011,42(2):191-196.
    [16]REN F C,CHEN J.Modeling flow stress of 70Cr3Mo steel used for back-up roll during hot deformation considering strain compensation[J].Journal of Iron and Steel Research International,2013,20(11):118-124.
    [17]CHEN G,CHEN W,MA L,et al.Strain-compensated Arrheniustype constitutive model for flow behavior of Al-12Zn-2.4Mg-1.2Cu alloy[J].Rare Metal Materials&Engineering,2015,44(9):2120-2125.
    [18]刘江林,曾卫东,谢英杰,等.基于应变补偿TC4-DT钛合金高温变形本构模型[J].稀有金属材料与工程,2015,44(11):2742-2746.LIU Jianglin,ZENG Weidong,XIE Yingjie,et al.Constitutive model of TC4-DT titanium alloy at elevated temperature considering compensation of strain[J].Rare Metal Materials&Engineering,2015,44(11):2742-2746.
    [19]MIRZADEH H,NAJAFIZADEH A.Hot deformation and dynamic recrystallization of 17-4 PH stainless steel[J].ISIJ International,2013,53(4):680-689.
    [20]BADJENA S K.Dynamic recrystallization behavior of vanadium micro-alloyed forging medium carbon steel[J].ISIJ International,2014,54(3):650-656.
    [21]张伟.粉末冶金Ti Al基合金的热加工行为及工艺研究[D].长沙:中南大学,2010.ZHANG Wei.High temperature deformation behaviors and microstructure evolution of powder metallurgy Ti Al based alloys[D].Changsha:Zhongnan University,2010.
    [22]ZENER C,HOLLOMON J H.Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15(1):22-32.
    [23]李红斌,李小林,徐树成,等.6082铝合金热变形流变应力曲线修正与本构方程[J].塑性工程学报,2016,23(3):152-158.LI Hongbin,LI Xiaolin,XU Shucheng.The flow tress curve correction and constitutive equation of 6082 aluminum alloy under thermal deformation[J].Journal of Plasticity Engineering.2016,23(3):152-158.
    [24]魏海莲,刘国权,肖翔,等.表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J].金属学报,2013,49(6):731-738.WEI Hailian,LIU Guoquan,XIAO Xiang,et al.Apparent and physically based constitutive analyses for hot deformation of austenitein 35Mn2 steel[J].Acta Metallurgica Sinica,2013,49(6):731-738.
    [25]朱洪军.高强韧Ti6246合金热变形行为及应变补偿型本构模型[J].金属热处理,2016,41(8):184-188.ZHU Hongjun.Hot deformation behavior and strain compensation constitutive model of high strength and high toughness Ti6246 alloy[J].Heat Treatment of Metals,2016,41(8):184-188.
    [26]孙朝阳,栾京东,刘赓,等.AZ31镁合金热变形流动应力预测模型[J].金属学报,2012,48(7):853-860.SUN Chaoyang,LUAN Jingdong,LIU Geng,et al.Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy[J].Acta Metallurgica Sinica,2012,48(7):853-860.
    [27]武宇,宜楠,乔慧娟,等.Nb10Zr合金高温变形应变补偿型本构关系模型[J].稀有金属材料与工程,2013,42(10):2117-2122.WU Yu,YI Nan,QIAO Huijuan,et al.High-temperature deformation constitutive relationship model considering strain compensation of Nb10Zr alloy[J].Rare Metal Materials and Engineering,2013,42(10):2117-2122.
    [28]罗锐,程晓农,徐桂芳,等.新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金的热变形行为及本构模型[J].稀有金属,2017,41(2):132-139.LUO Rui,CHENG Xiaonong,XU Guifang,et al.Constitutive modeling for elevated temperture flow behavior of an AFA alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo[J].Chinese Journal of Rare Metals,2017,41(2):132-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700