SBS/橡胶粉复合改性SH型混合生物沥青工艺及机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Composite Modification Technology and Mechanism of SH Blended Bio-asphalt by Combining SBS with Crumb Rubber
  • 作者:董泽蛟 ; 周涛 ; 栾海 ; 杨晨 ; 王鹏 ; 冷真
  • 英文作者:DONG Ze-jiao;ZHOU Tao;LUAN Hai;YANG Chen;WANG Peng;LENG Zhen;School of Transportation Science and Engineering, Harbin Institute of Technology;Jilin Traffic Planning and Design Institute;School of Traffic Engineering, Shandong Jianzhu University;Department of Civil and Environmental Engineering, Hong Kong Polytechnic University;
  • 关键词:道路工程 ; 改性机理 ; 复合改性 ; 生物沥青 ; 改性工艺 ; 性能评价
  • 英文关键词:road engineering;;modification mechanism;;composite modification;;bio-asphalt;;modification technology;;performance evaluation
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:哈尔滨工业大学交通科学与工程学院;吉林省交通规划设计院;山东建筑大学交通工程学院;香港理工大学土木与环境工程系;
  • 出版日期:2019-04-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.188
  • 基金:国家自然科学基金项目(51478152,51478154);; 吉林省交通运输科技计划项目(2018-1-2)
  • 语种:中文;
  • 页:ZGGL201904020
  • 页数:11
  • CN:04
  • ISSN:61-1313/U
  • 分类号:219-229
摘要
为探究复合改性技术提升混合生物沥青路用性能的工艺及机理,针对特定来源的SH型生物沥青,将其与石油沥青共混制备混合生物沥青后进行SBS/橡胶粉复合改性,研究改性顺序及改性剂掺量对复合改性沥青常规路用性能的影响、生物沥青掺量对改性剂溶胀特性与复合改性沥青高温及低温性能的影响,由此确定混合生物沥青复合改性工艺;利用多应力重复蠕变恢复(MSCR)、弯曲梁流变(BBR)和频率扫描(FS)试验评价复合改性沥青的流变特性;借助红外光谱(IR)化学官能团分析以及荧光显微镜(FM)和原子力显微镜(AFM)微观形貌观测分析揭示混合生物沥青复合改性机理。研究结果表明:SBS掺量为2.5%,橡胶粉掺量为18%(内掺)时,按照先SBS改性后橡胶粉改性的顺序制备的复合改性沥青的常规路用性能均较优;生物沥青掺量为15%时改性剂溶胀特性与复合改性沥青的高温及低温性能均较佳;SBS/橡胶粉复合改性在显著提升混合生物沥青弹性恢复率与m值的同时还降低了其不可恢复柔量与劲度模量,即改善了混合生物沥青的高温稳定性与低温抗裂性,且此结果与FS复数模量主曲线结果相一致;生物沥青可有效增溶聚合物改性剂并增强聚合物相网络结构,从而显著提升沥青复合改性效果;对混合生物沥青进行SBS/橡胶粉复合改性后未出现新的特征吸收峰,此复合改性过程属于物理变化;沥青厂生产的复合改性沥青性能优于实验室水平制备的复合改性沥青。
        An investigation of composite modification technology and the mechanism of blended bio-asphalt was performed to improve pavement performance. SH bio-asphalt from a specific source was mixed with petroleum-based asphalt to prepare the blended bio-asphalt, which was then modified by combining styrene-butadiene-styrene(SBS) with crumb rubber(CR). The effects of the modification order and modifier contents on the conventional pavement performance of composite modified asphalt were studied as well as the effects of bio-asphalt content on the swelling properties of modifiers and the high/low-temperature performance of composite modified asphalt. From this, a composite modification technology for blended bio-asphalt was determined. Multiple Stress Creep Recovery(MSCR), Bending Beam Rheometer(BBR), and Frequency Sweep(FS) tests were also performed to evaluate the rheological characteristics of the composite modified asphalt. In addition, chemical functional groups analysis by Infrared Spectroscopy(IR) and micro-topographical characteristics analysis by Fluorescence Microscopy(FM) and Atomic Force Microscopy(AFM) was conducted to reveal the composite modification mechanism of blended bio-asphalt. The results show that the comprehensive pavement performance of the composite modified asphalt with SBS modification(2.5% wt.) before CR modification(18% wt.) is higher than that of the asphalt with SBS modification after CR modification. Both the high/low-temperature performance and modifier swelling properties of composite modified asphalt are excellent with a bio-asphalt content of 15%. Therefore, the composite modification by combining SBS with CR could significantly enhance the high-temperature stability and low-temperature cracking resistance of blended bio-asphalt by increasing the recovery(R) and m-value as well as decreasing the recoverable compliance(Jnr) and creep stiffness(S). These results also correlate with those of complex modulus master curves by FS test. In addition, the network structure of the polymer phase is strengthened owing to the effective solubilization of the polymer modifier by the bio-asphalt addition, thus improving the composite modification effect of the asphalt. Moreover, no new infrared absorption peaks occur in the composite modified asphalt, which implies that this composite modification is a physical process. Furthermore, the comprehensive performance of composite modified asphalt processed in an asphalt factory is better than that of asphalt prepared in a laboratory.
引文
[1] YANG S,SUCIPTAN T.Rheological Behavior of Japanese Cedar-based Biobinder as Partial Replacement for Bituminous Binder [J].Construction and Building Materials,2016,114:127-133.
    [2] YANG X,YOU Z,DAI Q,et al.Mechanical Performance of Asphalt Mixtures Modified by Bio-oils Derived from Waste Wood Resources [J].Construction and Building Materials,2014,51:424-431.
    [3] DHASMANA H,OZER H,AL-QADI M L,et al.Rheological and Chemical Characterization of Biobinders from Different Biomass Resources [J].Transportation Research Record,2015,2505 (9):121-129.
    [4] HILL D R.Bioasphalt and Biochar from Pyrolysis of Urban Yard Waste [D].Cleveland:Case Western Reserve University,2012.
    [5] ELLIE H F,OLDHAM D,BUABENG F S,et al.Investigating the Aging Susceptibility of Bio-modified Asphalts [C] // HARVEY J,CHOU K F.Airfield and Highway Pavements 2015:Innovative and Cost-effective Pavements for a Sustainable Future.Reston:American Society of Civil Engineers,2015:62-73.
    [6] DONG Z,ZHOU T,WANG H,et al.Performance Comparison Between Different Sourced Bioasphalts and Asphalt Mixtures [J].Journal of Materials in Civil Engineering,2018,30 (5):4018063.
    [7] UZUN B B,APAYDIN-VAROL E,ATE? F,et al.Synthetic Fuel Production from Tea Waste:Characterisation of Bio-oil and Bio-char [J].Fuel,2010,89 (1):176-184.
    [8] JALKH R,ABIAD M,CHEHAB G R.Rejuvenators for Asphalt Binders Using Oil Extracted from Spent Coffee Grounds [C] // FARID A,DE A,REDDY K R,et al.Geo-Chicago 2016:Geotechnics for Sustainable Energy.Reston:American Society of Civil Engineers,2016:666-676.
    [9] 汪海年,高俊锋,尤占平,等.路用生物沥青研究进展[J].武汉理工大学学报,2014,36(7):55-60.WANG Hai-nian,GAO Jun-feng,YOU Zhan-ping,et al.Advances in Bio-binder Application on Road Pavement [J].Journal of Wuhan University of Technology,2014,36 (7):55-60.
    [10] RAOUF M A,WILLIAMS R C.Rheology of Fractionated Cornstover Bio-oil as a Pavement Material [J].International Journal of Pavements,2010,9 (1/2/3):58-69.
    [11] CHEN M,LENG B,WU S,et al.Physical,Chemical and Rheological Properties of Waste Edible Vegetable Oil Rejuvenated Asphalt Binders [J].Construction and Building Materials,2014,66,286-298.
    [12] POUGET S,LOUP F.Thermo-mechanical Behaviour of Mixtures Containing Bio-binders [J].Road Materials and Pavement Design,2013,14:212-226.
    [13] MOGAWER W S,FINI E H,AUSTERMAN A J,et al.Performance Characteristics of High Reclaimed Asphalt Pavement Containing Bio-modifier [J].Road Materials and Pavement Design,2016,17 (3):753-767.
    [14] FINI E H,KALBERER E W,SHAHBAZI A,et al.Chemical Characterization of Biobinder from Swine Manure:Sustainable Modifier for Asphalt Binder [J].Journal of Materials in Civil Engineering,2011,23 (11):1506-1513.
    [15] YANG X,YOU Z,MILLS-BEALE J.Asphalt Binders Blended with a High Percentage of Biobinders:Aging Mechanism Using FTIR and Rheology [J].Journal of Materials in Civil Engineering,2015,27 (4):04014157.
    [16] MULLEN C A,BOATENG A A.Chemical Composition of Bio-oils Produced by Fast Pyrolysis of Two Energy Crops [J].Energy and Fuel,2008,22 (3):2104-2109.
    [17] RAOUF M A,WILLIAMS R C.Determination of Pre-treatment Procedure Required for Developing Bio-binders from Bio-oils [C] // Iowa State University.Proceedings of the 2009 Mid-continent Transportation Research Symposium.Ames:Iowa State University,2009:1-14
    [18] 杨光,申爱琴,陈志国,等.季冻区橡胶粉与SBS复合改性沥青混合料性能及改性机理[J].长安大学学报:自然科学版,2015,35(6):6-15,23.YANG Guang,SHEN Ai-qin,CHEN Zhi-guo,et al.Pavement Performance and Modified Mechanism of Rubber Powder and SBS Compound Modified Asphalt Mixtures in Seasonal Freezing Region [J].Journal of Chang’an University:Natural Science Edition,2015,35 (6):6-15,23.
    [19] XIANG L,WANG Z G,DU Y,et al.Preparation Technology and Performance Analysis of Crumb Rubber and SBS Composite Modified Asphalt Binder [J].Advanced Materials Research,2010,160-162:1320-1324.
    [20] ZHANG F,HU C.Physical and Rheological Properties of Crumb Rubber/Styrene-butadiene-styrene Compound Modified Asphalts [J].Polymer Composites,2017,38 (9):1918-1927.
    [21] WANG Y,ZHAN B,CHENG J.Study on Preparation Process of SBS/Crumb Rubber Composite Modified Asphalt [J].Advanced Materials Research,2012,450-451:417-422.
    [22] 黄卫东,颜川奇,刘少鹏,等.溶解性胶粉/SBS复合改性沥青低温性能评价[J].建筑材料学报,2016,19(6):1088-1091.HUANG Wei-dong,YAN Chuan-qi,LIU Shao-peng,et al.Low Temperature Performance Comparison of Terminal Blend Rubberized/SBS Modified Asphalt [J].Journal of Building Materials,2016,19 (6):1088-1091.
    [23] DONG F,YU X,LIU S,et al.Rheological Behaviors and Microstructure of SBS/CR Composite Modified Hard Asphalt [J].Construction and Building Materials,2016,115 (15):285-293.
    [24] HORN N R.A Critical Review of Free Volume and Occupied Volume Calculation Methods [J].Journal of Membrane Science,2016,518:289-294.
    [25] 曹丽萍,谭忆秋,董泽蛟,等.应用玻璃化转变温度评价SBS改性沥青低温性能[J].中国公路学报,2006,19(2):1-6.CAO Li-ping,TAN Yi-qiu,DONG Ze-jiao,et al.Evaluation for Low Temperature Performance of SBS Modified Asphalt Using Glass Transition Temperature [J].China Journal of Highway and Transport,2006,19 (2):1-6.
    [26] MARASTEANU M O,ANDERSON D.Time-temperature Dependency of Asphalt Binders—An Improved Model [J].Journal of the Association of Asphalt Paving Technologists,1996,65:408-448.
    [27] 翁诗甫,徐怡庄.傅里叶变换红外光谱分析[M].第3版.北京:化学工业出版社,2016.WENG Shi-fu,XU Yi-zhuang.Fourier Transform Infrared Spectroscopy Analysis [M].3rd ed.Beijing:Chemical Industry Press,2016.
    [28] 王鹏,董泽蛟,谭忆秋,等.基于分子模拟的沥青蜂状结构成因探究[J].中国公路学报,2016,29(3):9-16.WANG Peng,DONG Ze-jiao,TAN Yi-qiu,et al.Research on the Formation Mechanism of Bee-like Structures in Asphalt Binders Based on Molecular Simulations [J].China Journal of Highway and Transport,2016,29 (3):9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700