浅埋深厚煤层工作面开采顶板导水裂缝带发育高度综合研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthetic Study of Roof Water Flowing Fractured Zone Height of Working Face with Thick Coal Seam in Shallow
  • 作者:李建军 ; 史永理 ; 佟文亮
  • 英文作者:LI Jian-jun;SHI Yong-li;TONG Wen-liang;Shandong Province Daizhuang Shengjian Coal Mine;Geoscience and Engineering School,Shandong University of Science and Technology;
  • 关键词:导水裂缝带 ; 数值模拟 ; 经验公式 ; 现场实测
  • 英文关键词:water flowing fractured zone;;numerical simulation;;empirical formula;;field measurement
  • 中文刊名:MKKC
  • 英文刊名:Coal Mining Technology
  • 机构:山东省岱庄生建煤矿;山东科技大学地球科学与工程学院;
  • 出版日期:2018-02-15
  • 出版单位:煤矿开采
  • 年:2018
  • 期:v.23;No.140
  • 基金:“十三五”国家重点研发计划项目(2017YFC0804100);; 国家自然科学基金项目(41402250;41372290)
  • 语种:中文;
  • 页:MKKC201801008
  • 页数:4
  • CN:01
  • ISSN:11-3677/TD
  • 分类号:35-37+47
摘要
以岱庄生建煤矿3上煤层开采为例,综合运用数值模拟、经验公式预计以及现场实测3种方法来确定其导水裂缝带发育高度,并对比分析其优缺点,以此提高结果的准确度。结果表明:3种方法对应的结果分别为60,43.6和44.7m,而前两种方法具有其局限性,因此综合确定了31302工作面3上煤层开采顶板导水裂缝带高度为44.7m。
        It taking upper coal seam mining of 3# coal seam in Daizhuang Shengjian coal mine as example,water flowing fractured zone height was confirmed by the following three method,numerical simulation,empirical formula and field measurement,and then the accuracy rating of results was improved according contrastive analysis of it' s merits and demerits. The results showed that the results of the three methods were 60 m,43. 6 m and 44. 7 m,respectively,the former two method had it' s limitations,so water flowing fractured zone height of upper coal seam mining in 31302 working face was confirmed as 44. 7 m.
引文
[1]尹尚先,徐斌,徐慧,等.综采条件下煤层顶板导水裂缝带高度计算研究[J].煤炭科学技术,2013,41(9):138-142.
    [2]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S].北京:煤炭工业出版社,2017.
    [3]胡小娟,李文平,曹丁涛,等.综采导水裂隙带多因素影响指标研究与高度预计[J].煤炭学报,2012,37(4):613-620.
    [4]魏久传,吴复柱,谢道雷,等.半胶结中低强度围岩导水裂缝带发育特征[J].煤炭学报,2016,41(4):974-983.
    [5]张勤,刘伟韬,黄启铭.大采深厚煤层综放采场导水裂缝带数值模拟研究[J].煤炭技术,2017,36(9):162-164.
    [6]刘伟韬,刘士亮,霍志超,等.顶板导水裂隙带发育高度模拟与测试技术研究[J].工程勘察,2014,42(11):39-43.
    [7]尹会永,魏久传,Liliana Lefticariu,等.下组煤露头区导水裂缝带高度综合确定[J].煤矿开采,2015,20(3):89-92.
    [8]刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001,23(2):201-204.
    [9]孙亚军,徐志敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(2):238-245.
    [10]王琳琳,魏久传,尹会永,等.新安煤矿16煤导水裂隙带高度研究[J].山东科技大学学报(自然科学版),2014,33(1):40-45.
    [11]黄欢.基于PLS-BP神经网络模型的导水裂缝带高度预测[J].煤矿开采,2016,21(6):6-10.
    [12]施龙青,辛恒奇,翟培合,等.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41.
    [13]赵德深,徐孟林,夏洪春.基于熵权-层次分析法的导水裂缝带高度预测的研究[J].煤矿开采,2013,18(1):8-10.
    [14]孙闯,宋业杰.基于断裂力学的长壁工作面导水裂缝带高度预计[J].煤矿开采,2016,21(3):81-84.
    [15]邓志刚,李国宏,盛继权,等.基于微震分析法的特厚煤层导水裂缝带高度研究[J].煤矿开采,2012,17(6):86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700