榆神矿区浅埋煤层多重水体下大采高综采水害影响评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Water Disaster Influence of Fully Mechanized Ming with Multiply Water Body in Shallow of Yushen Mine Area
  • 作者:郭守泉 ; 宋业杰
  • 英文作者:GUO Shou-quan;SONG Ye-jie;Coal Mining & Designing Department,Tiandi Science & Technology Co.,Ltd.;Mining Institute,China Coal Research Institute;
  • 关键词:浅埋煤层 ; 多重水体 ; 大采高综采 ; 薄基岩 ; 水害评价
  • 英文关键词:coal seam in shallow;;multiply water body;;fully mechanized mining with large mining height;;thin base rock;;water disaster evaluation
  • 中文刊名:MKKC
  • 英文刊名:Coal Mining Technology
  • 机构:天地科技股份有限公司开采设计事业部;煤炭科学研究总院开采研究分院;
  • 出版日期:2018-12-15
  • 出版单位:煤矿开采
  • 年:2018
  • 期:v.23;No.145
  • 基金:国家自然科学基金青年基金资助(51704161)
  • 语种:中文;
  • 页:MKKC201806030
  • 页数:5
  • CN:06
  • ISSN:11-3677/TD
  • 分类号:122-126
摘要
榆神矿区3煤顶板多重水体并存,对区内浅埋深厚煤层开采构成了水害威胁。以榆神矿区某矿为例,煤层顶板赋存有3类共6重水体,通过分析覆岩水体的赋存条件,确定了不同水体的富水性特征。基于3煤覆岩结构和类似条件矿井开采实践,预计了薄基岩厚土层条件下3煤7m大采高综采的覆岩破坏高度,计算了不同类型安全煤岩柱的尺寸。根据覆岩水体的富水性特征和空间分布,分析了不同水体对3煤大采高综采的水害影响程度,得出基岩风化带含水层、顶板基岩含水层和烧变岩含水层对3煤开采构成直接充水影响;黄土孔隙裂隙含水层对3煤开采构成溃砂影响;萨拉乌苏组含水层、地表十八墩河对3煤开采不构成直接充水影响。为确保安全,在3煤开采前须对基岩风化带含水层局部富水性较好的区域提前疏放,对烧变岩含水层留设20m的侧向防隔水煤岩柱。
        Multiply water bodies existed in coal seam of Yushen coal mine area,and within the area the thick coal seam in shallow mining was influenced by the water bodies. It taking one coal mine of Yushen mine district as an example,in total six water bodies as three kinds existed in roof,the watery of different water body was confirmed based on occurrence condition of overburden body. Based on similar mining situation and overlying strata structure of the third coal seam,and then overburden failure height of fully mechanized coal mining with mining height 7m under thin base rock and thick soil layer was predicted,and different safety coal pillar sizes were also evaluated. Water disaster influence of different water bodies to mining were analyzed based on overburden watery and spatial distribution,and then directly influence that water filling to mining were obtained,which include weathering zone aquifer base rock,aquifer of roof base rock and burnt rock aquifer. Sand inrush induced by loess pore and fracture aquifer to mining of No. 3 coal seam,directly water filling influence to No. 3 coal seam mining by Salawusu group aquifer and Shibadun river would not appeared. So some rich water region of base rock weathering zone should be drained before mining,lateral waterproof coal and rock pillar with size 20 m in burnt rock zone should be retained.
引文
[1]王佟,蒋泽泉.榆神府区矿井水文地质条件分类研究[J].中国煤炭地质,2011,23(1):21-24.
    [2]韩树青,范立民,杨保国,等.开发陕北侏罗纪煤田几个水文地质工程地质问题分析[J].中国煤炭地质,1992,4(1):49-52.
    [3]魏久传,吴复柱,谢道雷,等.半胶结中低强度围岩导水裂缝带发育特征[J].煤炭学报,2016,41(4):974-983.
    [4]蒋泽泉,王建文,王红科.浅埋煤层关键隔水层隔水性能及采动影响变化[J].中国煤炭地质,2011,23(4):26-31.
    [5]李来源.浅埋深薄基岩厚煤层大采高综采覆岩破坏高度实测研究[J].能源与环保,2017,37(5):206-209.
    [6]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1):7-11.
    [7]王金安,赵志宏,侯志鹰.浅埋坚硬覆岩下开采地表塌陷机理研究[J].煤炭学报,2007,32(10):1051-1056.
    [8]李金华.浅埋煤层采场覆岩破坏及地表移动规律研究[D].西安:西安科技大学,2017.
    [9]宋选民,顾铁凤,闫志海.浅埋煤层大采高工作面长度增加对矿压显现的影响规律研究[J].岩石力学与工程学报,2007,26(S1):4007-4013.
    [10]王兆会,杨胜利,孔德中.浅埋深薄基岩高强度开采工作面压架机理分析[J].煤炭科学技术,2015,43(3):1-5,9.
    [11]李磊.浅埋深薄基岩地表水体下厚煤层重复开采研究[J].煤矿开采,2016,21(4):84-86.
    [12]武东恩.浅埋深薄基岩厚煤层防治水影响因素分析[J].能源技术与管理,207,42(1):105-107.
    [13]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.
    [14]刘天泉.露头煤柱优化设计理论与技术[M].北京:煤炭工业出版社,1998.
    [15]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [16]国家安全生产监督管理总局,国家煤矿安全监察局,等.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017.
    [17]国家安全生产监督管理总局.煤矿防治水细则[M].北京:煤炭工业出版社,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700