大佛寺井田煤层气井压裂参数优化方案
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization program of fracturing parameters for coalbed methane wells in Dafosi Minefield
  • 作者:马东民 ; 王传涛 ; 夏玉成 ; 张嘉睿 ; 邵凯 ; 杨甫
  • 英文作者:MA Dong-min;WANG Chuan-tao;XIA Yu-cheng;ZHANG Jia-rui;SHAO Kai;YANG Pu;College of Geology and Environment,Xi'an University of Science and Technology;Geological Research Institute for Coal Greey Mining,Xi'an University of Science and Technology;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Land and Resources;Shaanxi Xintai Energy Company Limited;
  • 关键词:压裂参数 ; 大佛寺井田 ; 参数优化
  • 英文关键词:fracturing parameters;;Dafosi Minefield;;parameter optimization
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学地质与环境学院;西安科技大学煤炭绿色开采地质研究院;国土资源部煤炭资源勘查与综合利用重点实验室;陕西新泰能源有限公司;
  • 出版日期:2019-03-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.166
  • 基金:西安科技大学煤炭绿色开采地质研究院项目(MTy2019-04)
  • 语种:中文;
  • 页:XKXB201902012
  • 页数:7
  • CN:02
  • ISSN:61-1434/N
  • 分类号:85-91
摘要
为有效优化彬长矿区大佛寺井田煤层气井压裂施工工艺,对井田内24口煤层气直井产气情况和压裂施工参数进行统计分析,研究了煤层气直井压裂施工对其产能的影响,并将产能效果较好的气井压裂施工参数进行了分析对比。研究发现,在煤储层地质因素一致的情况下,影响压裂效果的主要工程参数有施工排量、压裂液用量、加砂强度以及砂比等。大佛寺井田煤层气直井采用活性水压裂液,支撑剂为石英砂,压裂施工排量为5. 4~8. 5 m~3/min,压裂液用量616. 00~1 193. 25 m3,加砂强度为3. 26~13. 00 m~3/m,砂比为6. 9%~17. 1%.结合气井历史排采资料和相关地质资料,以日均产气量和稳定日产量1 000 m~3为压裂效果产能下限,得到适合大佛寺井田煤层气直井的压裂参数优化配置,建议压裂工艺优化方案设计如下:施工排量建议为8~10 m~3/min;细砂段塞1~2个;压裂液用量建议为950~1 100 m~3(前置液占25%~40%);加砂强度建议为5~7 m~3/m(煤厚> 12 m)或8~9 m~3/m(煤厚<12 m);砂比建议为10%~11%;支撑剂中中砂/粗砂比值建议为2~3.该方案可为井田后期煤层气井的压裂施工提供一定的工程依据。
        In order to optimize the fracturing effect of coalbed methane( CBM) wells in Dafosi mine field of Binchang mining area,the gas production and fracturing parameters of 24 CBM vertical wells were analyzed statistically. The influence of fracturing on the productivity of CBM vertical wells was studied,and the fracturing parameters of wells with better production were compared. It is found that the main engineering parameters affecting fracturing effect are operational discharge capacity,fracturing fluid dosage,sand strength and sand ratio under the same geological factors of coal reservoir. The CBM vertical wells in Dafosi mine field adopts reactive water fracturing with quartz sand as proppant,the operational discharge capacity was 5. 4 ~ 8. 5 m~3/min,the fracturing fluid dosage was 616. 00 ~ 1 193. 25 m~3,the sand strength was 3. 26 ~ 13. 00 m~3/m and the sand ratio was 6. 9% ~ 17. 1%. Taking the average daily and steady gas production of 1 000 m~3 as the lower limit of productivity,optimized fracturing parameters are obtained by comparative analysis of the data of historical production and related geology. The optimized fracturing scheme is suggested as follows: operational discharge capacity is suggested to be 8 ~ 10 m~3/min; 1 or 2 fine sand plugs are added in preflush stage; total volume of fracturing fluid is set between 950 and 1 100 m~3( with 25% ~ 40% preflush fluid); sand strength is suggested to be 5 ~ 7 m~3/m when coal seam thickness excesses 12 m or 8 ~ 9 m~3/m when thickness was less than 12 m; sand ratio is suggested 6. 9% ~ 17. 1%; the medium/coarse sand ratio in propping agents is set 2 ~ 3. Meanwhile,the scheme can provide certain engineering basis for the fracturing construction of later CBM wells.
引文
[1]李金平,汤达祯,许浩,等.低煤阶煤层气井抽采特征及影响因素分析[J].煤炭科学技术,2013,41(12):53-56.LI Jin-ping,TANG Da-zhen,XU Hao,et al. Analysis on gas drainage features and influence factors of low rank coalbed methane well[J]. Coal Science and Technology,2013,41(12):53-56.
    [2]辛欣,张培河,姜在炳,等.彬长矿区煤层气储层参数及开发潜力[J].中国煤炭地质,2014,26(3):19-22.XIN Xin,ZHANG Pei-he,JIANG Zai-bing,et al. CBM reservoir parameters and exploitation potential in Binchang mining area[J]. Coal Geology of China,2014,26(3):19-22.
    [3]叶建平,陆小霞.我国煤层气产业发展现状和技术进展[J].煤炭科学技术,2016,44(1):24-28,46.YE Jian-ping,LU Xiao-xia. Development status and technical progress of China coalbed methane industry[J]. Coal Science and Technology,2016,44(1):24-28,46.
    [4]焦红岩.水平井压裂参数优化设计研究[J].石油化工高等学校学报,2014,27(1):35-41,47.JIAO Hong-yan. Optimal design research to fracture parameters of horizontal well fracturing[J]. Journal of Petrochemical Universities,2014,27(1):35-41,47.
    [5]马平华,霍梦颖,何俊,等.煤层气井压裂影响因素分析与技术优化———以鄂尔多斯盆地东南缘韩城矿区为例[J].天然气地球科学,2017,28(2):296-304.MA Ping-hua,HUO Meng-ying,HE Jun,et al. Influencing factors and technology optimization of coalbed methane well fracturing:taking Hancheng mining area as an example[J]. Natural Gas Geoscience,2017,28(2):296-304.
    [6] Zhang J,Bian X. Numerical simulation of hydraulic fracturing coalbed methane reservoir with Independent fracture grid[J]. Fuel,2015,143(10):543-546.
    [7]李全贵,翟成,林柏泉,等.定向水力压裂技术研究与应用[J].西安科技大学学报,2011,31(6):735-739.LI Quan-gui,ZHAI Cheng,LIN Bai-quan,et al. Research and application of directional hydraulic fracturing technology[J]. Journal of Xi’an University of Science and Technology,2011,31(6):735-739.
    [8] Qi W U,Yun X U,Wang X,et al. Volume fracturing technology of unconventional reservoirs:Connotation,design optimization and implementation[J]. Petroleum Exploration&Development Online,2012,39(3):377-384.
    [9] Liu Y,Tang D,Xu H,et al. The impact of coal macrolithotype on hydraulic fracture initiation and propagation in coal seams[J]. Journal of Natural Gas Science&Engineering,2018,56:299-314.
    [10]张勇年,马新仿,王怡,等.沁端区块煤层气水平井分段压裂裂缝参数优化研究[J].煤炭科学技术,2016,44(9):178-184,19.ZHANG Yong-nian,MA Xin-fang,WANG Yi,et al. Optimized study on fracture coefficient of sectional fracturing in coalbed methane horizontal well in Qinduan Block[J]. Coal Science and Technology,2016,44(9):178-184,19.
    [11] Roussel N P,Sharma M M. Optimizing fracture spacing and sequencing in horizontal-well fracturing[J]. SPE Production&Operations,2011,26(2):173-184.
    [12]李春,田跃儒,陈星,等.沁南地区15#煤压裂改造技术研究及应用[J].煤炭技术,2017,36(6):191-193.LI Chun,TIAN Yue-ru,CHEN Xing,et al. Qinnan field15#CBM fracturing technology research and application[J]. Coal Technology,2017,36(6):191-193.
    [13]孙学阳,夏玉成,李成,等.韩城矿区构造控煤样式与构造控煤模式[J].西安科技大学学报,2019,39(1):50-55.SUN Xue-yang,XIA Yu-cheng,LI Chen,et al. Coal-control structural patterns and coal-control structural modes of Hancheng mine area[J]. Journal of Xi’an University of Science and Technology,2019,39(1):50-55.
    [14]王生全,武超,彭涛,等.青龙寺煤矿5-2煤层顶板含水层突水危险性评价[J].西安科技大学学报,2018,38(6):959-965.WANG Sheng-quan,WU Chao,PENG Tao,et al. Evaluation of water inrush hazard in roof aquifer of 5-2coal seam in Qinglongsi coal mine[J]. Journal of Xi’an University of Science and Technology,2018,38(6):959-965.
    [15]方刚,夏玉成.柴沟矿薄基岩顶巨厚煤层过沟开采防治水技术西安科技大学学报,2018,38(5):758-766.FANG Gang,XIA Yu-cheng. Prevention and control technology of water during mining extremely thick coal seam with thin rock roof under ditch in Chaigou coal mine[J]. Journal of Xi’an University of Science and Technology,2018,38(5):758-766.
    [16]李谦益.改进可拓层次法在煤层顶板稳定性评价中的应用[J].西安科技大学学报,2018,38(4):643-649.LI Qian-yi. Application of EAHP in stability evaluation of coal seam roof[J]. Journal of Xi’an University of Science and Technology,2018,38(4):643-649.
    [17]李亭.煤层气压裂液研究及展望[J].天然气勘探与开发,2013,36(1):51-53.LI Ting. Fracturing fluid of CBM[J]. Natural Gas Exploration and Development,2013,36(1):51-53.
    [18]张典荣,李静,张佳,等.新型多用钻孔测斜仪的研制及应用[J].西安科技大学学报,2018,38(2):224-229.ZHANG Dian-rong,LI Jing,ZHANG Jia,et al. Development and application of new type multi-usage borehole inclinomlter[J]. Journal of Xi’an University of Science and Technology,2018,38(2):224-229.
    [19]李玉伟,艾池.煤层气直井水力压裂裂缝起裂模型研究[J].石油钻探技术,2015,43(4):83-90.LI Yu-wei,AI Chi. Hydraulic fracturing fracture initiation model for a vertical CBM well[J]. Petroleum Drilling Techniques,2015,43(4):83-90.
    [20]党永潮,张才智.陕北地区延安组浅层油藏效益建产研究[J].西安科技大学学报,2017,37(6):872-878.DANG Yong-chao,ZHANG Cai-zhi. Benefit production of the shallow oil reservoir of Yan’an Formation in northern Shaanxi[J]. Journal of Xi’an University of Science and Technology,2017,37(6):872-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700