西藏铁格隆南Cu-Au矿床成矿流体特征及与矿化蚀变的内在联系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fluid Inclusion Feature and Its Internal Relationship with Mineralization and Epithermal Alteration of the Tiegelongnan Cu-Au Deposit
  • 作者:贺文 ; 林彬 ; 杨欢欢 ; 方向 ; 宋英昕 ; 韦少港 ; 侯淋
  • 英文作者:HE Wen;LIN Bin;YANG Huan-huan;FANG Xiang;SONG Ying-xin;WEI Shao-gang;HOU Lin;China University of Geosicences (Beijing);MLR Key Laboratory of Metallogeny and Mineral Resource Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences;Shandong Geological Sciences Institute;
  • 关键词:流体包裹体群 ; 显微测温 ; 拉曼光谱 ; 铁格隆南斑岩-浅成低温热液矿床 ; 班公湖—怒江成矿带 ; 多龙矿集区
  • 英文关键词:fluid inclusion assemblages;;microthermometry;;Raman spectral;;Tiegelongnan porphyry-epithermal deposit;;Bangong–Nujiang ore belt;;Duolong ore concentration area
  • 中文刊名:DQXB
  • 英文刊名:Acta Geoscientica Sinica
  • 机构:中国地质大学(北京);中国地质科学院矿产资源研究所国土资源部矿床成因与资源评价重点实验室;山东省地质科学研究院;
  • 出版日期:2017-09-15
  • 出版单位:地球学报
  • 年:2017
  • 期:v.38;No.168
  • 基金:国土资源部公益性行业专项(编号:201511017);; 中国地质科学院基本科研业务费项目(编号:YYWF201608)联合资助~~
  • 语种:中文;
  • 页:DQXB201705005
  • 页数:13
  • CN:05
  • ISSN:11-3474/P
  • 分类号:72-84
摘要
铁格隆南是一个超大型的斑岩-高硫化浅成低温热液Cu-Au矿床,该矿床位于中国西藏班公怒江成矿带多龙矿集区内。为了更好地限制该矿床在成矿过程中的物理条件,本次研究主要选择了流体包裹体群进行显微测温。在斑岩系统中,Qz-Cpy脉主要捕获了富液相流体,其Na Cl盐度为9.2%~12.9%,捕获温度为330~360℃,压力为121~170 bars,对应古深度为1.21~1.70 km。采样位置为地表以下1.03~1.07 km处,推算该处剥蚀深度为0.18~0.67 km。石英斑晶中流体包裹体以高盐度(LVS)和富气相流体(VL)为主,高盐度流体的Na Cl盐度为29.3%~35.8%,最低捕获温度为330~350℃。在浅成低温热液系统中,Qz-Aln-Py-Tn-Cv脉和石英斑晶主要捕获了高盐度(LVS)和富气相(VL)包裹体,其中LVS在矿化脉和石英斑晶中的Na Cl盐度分别为30.7%~32.4%和29.3%~35.8%,两者最低捕获温度一致,为310~320℃,对应最小压力为74~84 bars,最小古深度为0.74~0.84 km。采样位置为地表以下183.8~188.1m处,因此推算该处的最小剥蚀深度为0.55~0.65 km。通过拉曼光谱分析,发现在斑岩系统中,石英斑晶捕获的流体包裹体所包含的金属矿物主要为黄铜矿、赤铁矿,与斑岩系统的金属矿化类型一致;在浅成低温热液系统中,石英斑晶捕获的流体包裹体所包含的金属矿物为黄铁矿、铜蓝,也与蚀变岩中的金属矿物组合一致。同时,石英斑晶捕获的流体包裹体大部分定向穿切石英斑晶,并且与含矿石英脉具有一致的均一温度峰值。上述流体特征表明石英斑晶捕获了大量成矿流体。此外,这些流体包裹体中的金属矿物在高盐度流体和低密度流体中都存在,因此,这两种流体都具有搬运Cu的能力。通过以上研究认为,流体相分离、均一温度、盐度、流体包裹体所包含的金属矿物能够指示斑岩-浅成低温热液系统的矿化条件,并且这些流体确实能够搬运成矿物质,与铁格隆南斑岩-浅成低温热液矿化直接相关。
        The giant Tiegelongnan porphyry-high sulfidation epithermal Cu-Au deposit is located in the Duolong ore concentration area of the Bangong–Nujiang metallogenic belt in Tibet. To better confine the physical conditions of ore forming process, the authors used fluid inclusion assemblages to do microthermometry. In the porphyry system, fluid inclusions in the quartz-chalcopyrite vein are dominated by aqueous fluid containing 9.2 wt to 12.9 wt percent Na Cl equiv at temperatures between 330 and 360℃ ℃. The temperatures correspond to the trapping pressures of 121~170 bars and the paleo-depth of 1.21~1.70 km. The cores were sampled at the depth of 1.03~1.07 km, and it is thus estimated that the erosion depth at the spot is about 0.18~0.67 km. Fluid inclusions in quartz phenocrysts are dominated by LVS and VL fluid inclusions and the high-salinity fluid contains 29.3~35.8 wt percent Na Cl equiv at the lowest trapping temperatures between 330~350℃. In epithermal system the Qz-Aln-Py-Tn-Cv vein and quartz phenocrysts contain hypersaline inclusions as well as vapor rich inclusions, the hypersaline inclusions contain 30.7~32.4 wt and 29.3~35.8 wt percent Na Cl equiv, respectively, and the lowest trapping temperatures of the two subjects both range from 310 ℃to 320℃. The lowest trapping temperatures correspond to the lowest trapping pressures of 74~84 bars and the minimum paleo-depth of 0.74~0.84 km. These samples were collected at the depth of 183.8~188.1 meters and hence the minimum eroded depth should be about 0.55~0.65 km. Raman spectroscopic analysis indicates that chalcopyrite and hematite mainly exist in fluid inclusions of quartz phenocrysts in the porphyry system, which is consistent with the metallic mineral composition in the system. In addition, Raman spectroscopic analysis also implies that pyrite and covellite exist in fluid inclusions of quartz phenocrysts in the epithermal system. Besides, inclusions contained in qurartz phenocrysts cut through their hosts and generally distributed in the similar direction. Together with the fact that the homogenization temperatures of fluid inclusions in quartz phenocrysts correspond with those of the mineralized veins, the authors hold that fluid contained in quartz phenocrysts was directly related to mineralization. Meanwhile these metallic grains can be observed in both vapor rich and hypersaline inclusions, which implies that both the vapor rich and the hypersaline fluids were capable of carrying Cu. It is considered that the varieties of liquid phase, homogenization temperatures, salinities and minerals contained in fluid inclusions can represent the conditions of mineralization in porphyry and epithermal systems, and these fluids could indeed carry metallogenic elements and were responsible for the formation of the Tiegelongnan porphyry-epithermal deposit.
引文
方向,唐菊兴,宋杨,杨超,丁帅,王艺云,王勤,孙兴国,李玉彬,卫鲁杰,张志,杨欢欢,高轲,唐攀.2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义[J].地球学报,36(2):168-176.
    李光明,张夏楠,秦克章,孙兴国,赵俊兴,印贤波,李金祥,袁华山.2015.羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据[J].岩石学报,31(8):2307-2324.
    李金祥,秦克章,李光明,肖波,张天平,雷晓光.2008.西藏班公湖带多不杂富金斑岩铜矿床中金红石的特征及其意义[J].矿床地质,27(02):209-219.
    邱小平.2010.紫金山铜金矿床中铜硫化物的找矿信息研究[J].矿物学报,(S1):88.
    宋扬,唐菊兴,曲晓明,王登红,辛洪波,杨超,林彬,范淑芳.2014.西藏班公湖-怒江成矿带研究进展及一些新认识[J].地球科学进展,29(7):795-809.
    宋扬,杨欢欢,林彬,刘治博,王勤,高轲,杨超,方向.2017.青藏高原羌塘地体南缘浅成低温热液成矿系统的保存机制及其重要意义--以铁格隆南超大型矿床为例[J].地球学报,38(5):659-669.
    唐菊兴,宋扬,王勤,林彬,杨超,郭娜,方向,杨欢欢,王艺云,高轲,丁帅,张志,段吉琳,陈红旗,粟登逵,冯军,刘治博,韦少港,贺文,宋俊龙,李彦波,卫鲁杰.2016.西藏铁格隆南铜(金银)矿床地质特征及勘查模型--西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报,37(6):663-690.
    唐菊兴,孙兴国,丁帅,王勤,王艺云,杨超,陈红旗,李彦波,李玉彬,卫鲁杰,张志,宋俊龙,杨欢欢,段吉琳,高轲,方向,谭江云.2014.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J].地球学报,35(1):6-10.
    唐菊兴,王勤,杨欢欢,高昕,张泽斌,邹兵.2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报,38(5):571-613.
    王艺云,唐菊兴,宋扬,林彬,杨超,王勤,高轲,丁帅.2017.西藏铁格隆南超大型Cu(Au、Ag)矿床S、Pb同位素地球化学研究[J].地球学报,38(5):627-637.
    辛秀,王翠芝.2014.福建紫金山金铜矿明矾石的流体包裹体特征[J].现代地质,28(01):42-50.
    薛凯,阮诗昆.2008.福建紫金山矿田罗卜岭铜(钼)矿床地质特征及成因探讨[J].资源环境与工程,22(05):491-496.
    钟军,陈衍景,陈静,李晶,祁进平,戴茂昌.2011.福建省紫金山矿田罗卜岭斑岩型铜钼矿床流体包裹体研究[J].岩石学报,(05):1410-1424.
    ARRIBAS A J,HEDENQUIST J W,ITAYA T,OKADA T,CONCEPCION R A,GARCIA J S.1995.Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in Northern Luzon,Philippines[J].Geology,23(4):337-340.
    BODNAR R J,BURNHAM C W,STERNER S M.1985.Synthetic fluid inclusions in natural quartz III determination of phase equilibrium properties in the system H2O-Na Cl to 1000 and℃1500 bars[J].Geochim Cosmochim Acta,49:1861-1873.
    CZAMANSKI G K,FORCE E R,MOORE W J.1981.Some geologic and potential resource aspects of rutile in porphyry copper deposits[J].Economic Geology,76(8):2240-2256.
    DRIESNER T,HEINRICH C A.2007.The system H2O-Na Cl.Part I:Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000℃,0 to 5000bar,and 0 to 1 XNa Cl[J].Geochimica et Cosmochimica Acta,71:4880-4901.
    FANG Xiang,TANG Ju-xing,SONG Yang,YANG Chao,DINGShuai,WANG Yi-yun,WANG Qin,SUN Xing-guo,LI Yu-bin,WEI Lu-jie,ZHANG Zhi,YANG Huan-huan,GAO Ke,TANG Pan.2015.Formation Epoch of the South Tiegelong Supelarge Epithermal Cu(Au-Ag)Deposit in Tibet and Its Geological Implications[J].Acta Geisicentica Sinica,36(2):168-176(in Chinese with English abstract).
    HEDENQUIST J W,ARRIBAS A,REYNOLDS J.1998.Evolution of an intrusion centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines[J].Economic Geology,93(4):373-404.
    HEINRICH C A.2005.The physical and chemical evolution of low-sanlinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study[J].Mineralium Deposita,39:864-889.
    ?MER A,RICHARDS J P,MUEHLENBACHS K.2016.Hydrothermal Evolution of the Copler Porphyry-Epithermal Au Deposit,Erzincan Province,Central Eastern Turkey[J].Economic Geology,111(7):1619-1658.
    KOUZMANOV K,RAMBOZ C,LEROUGE C,DELOULE E,BEAUFORT D,BOGDANOV K.2003.Stable isotopic constraints on the origin of epithermal Cu-Au and related porphyry copper mineralisations in the southern Pangyurishte district,Srednogorie zone,Bulgaria[J].Millpress,Rotterdam:1181-1184.
    LECUMBERRI-SANCHEZ P,STEELE-MACINNIS M,BODNARR J.2012.An umerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance[J].Geochimica et Cosmochimica Acta,92:14-22.
    LI Guang-ming,ZHANG Xia-nan,QIN Ke-zhang,SUN Xing-guo,ZHAO Jun-xing,YIN Xian-bo,LI Jin-xiang,YUAN Hua-shan.2015.The telescoped porphyry-high sulfidation epithermal Cu(-Au)mineralization fo Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terrane,Central Tibet:Integrated evidence from geology,hydrothermal alteration and sulfide assemblages[J].Acta Petrologica Sinica,31(8):2307-2324(in Chinese with English abstract).
    LI Jin-xiang,QIN Ke-zhang,LI Guang-ming,XIAO Bo,ZHANGTian-ping,LEI Xiao-guang.2008.Characteristics of rutiles from Duobuza gold-rich porphyry copper deposit in Bangong Lake Belt of northern Tibet and their significance[J].Mineral Deposits,27(2):209-219(in Chinese with English abstract).
    LIN Bin,CHEN Yu-chuan,TANG Ju-xing,WANG Qin,SONGYang,YANG Chao,WANG Wen-lei,HE Wen,ZHANG Le-jun.2017b.40Ar/39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au)Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet,China:Implication for Generation of Super-Large Deposit[J].Acta Geologica Sinica,91(2):801-840.
    LIN Bin,TANG Ju-xing,SONG Yang,HALL G,WANG Qin,YANG Chao,FANG Xiang,DUAN Ji-lin,YANG Huan-huan,LIU Zhi-bo,WANG Yi-yun,FENG Jun.2017a.Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au)Deposit in Tibet:Evidence from U-Pb,Re-Os Dating and Hf,S,and H-O Isotopes[J].Resource Geology,67(1):1-21.
    MANCANO D P,CAMPBELL A R.1995.Microthermometry of enargite hosted fluid indusions from the Lepanto,Philippines,high-sulfidation Cu Audeposit[J].Geochimica et Cosmochimica Acta,59(19):3909-3916.
    MARIANI E S,TOSCANI L,BOSCHETTI D,BERSANI D,MATTIOLI M.2015.Gold mineralisations in the Canan area,Lepaguare District,east-central Honduras:Fluid inclusions and geochemical constraints on gold deposition[J].Journal of Geochemical Exploration,158:243-256.
    MAYDAGáN L,FRANCHINI M,RUSK B,LENTZ D R,FARLANE C M,IMPICCINI A,RíOS F J,REY R.2015.Porphyry to Epithermal Transition in the Altar Cu-(Au-Mo)Deposit,Argentina,Studied by Cathodoluminescence,LA-ICP-MS,and Fluid Inclusion Analysis[J].Economic Geology,110(4):889-923.
    QIU Xiao-ping.2010.The exploring information study of the Cu sulfides of Zijinshan Cu-Au deposit[J].Acta Mineralogica Sinica,(S1):88(in Chinese with English abstract).
    REDMOND P B,EINAUDI M T,INAN E E,LANDTWING M R,HEINRICH C A.2004.Copper deposition by fluid cooling in intrusioncentered systems:new insights from the Bingham porphyry ore deposit,Utah[J].Geology,32(3):217-220.
    ROEDDER E.1971.Fluid inclusion studies on the porphyry-type ore deposits at Bingham,Utah,Butte,Montana,and Climax,Colorado[J].Economic Geology,66:98-120.
    ROEDDER E.1984.Fluid inclusions[J].Reviews in Mineralogy,12:646.
    RUSK B G,REED M H,DILLES J H,KLEMM L M,HEINRICHC A.2004.Compositions of magmatic-hydrothermal fluids determined by LA-ICPMS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte,Montana[J].Chemical Geology,210(1-4):173-199.
    RUSK B,MARK R.2002.Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit,Montana[J].Geological Society of America,30(8):727-730.
    RUSK B,REED M H,DILLES J H.2008.Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte,Montana[J].Economic Geology,103(2):307-334.
    SEO J H,HEINRICH C A.2013.Selective copper diffusion into quartz-hosted vapor inclusions:Evidence from other host minerals,driving forces,and consequences for Cu-Au ore formation[J].Geochimica et Cosmochimica Acta,113:60-90.
    SHAW C.2004.Mechanisms and rates of quartz dissolution in melts in the CMAS(Ca O-Mg O-Al2O3-Si O2)system[J].Contrib Mineral Petrol,148:180-200.
    SILLITOE R H.1997.Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,44(3):373-388,DOI:10.1080/08120099708728318.
    SONG Yang,TANG Ju-xing,QU Xiao-ming,WANG Deng-hong,XIN Hong-bo,YANG Chao,LIN Bin,FAN Shu-fang.2014.Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J].Advances in Earth Science,29(7):795-809(in Chinese with English abstract).
    SONG Yang,YANG Huan-huan,LIN Bin,LIU Zhi-bo,WANG Qin,GAO Ke,YANG Chao,FANG Xiang.2017.The Preservation System of Epithermal Deposits in South Qiangtang Terrane of Central Tibetan Plateau and Its Significance:A Case Study of the Tiegelongnan Superlarge Deposit[J].Acta Geoscientica Sinica,38(5):659-669(in Chinese with English abstract).
    STEELE-MACINNIS M,LECUMBERRI-SANCHEZ P,BODNARR J.2012.Hokie Flincs H2O Na Cl:A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-Na Cl[J].Computer&Geosciences,49:334-337.
    TANG Ju-xing,SONG Yang,WANG Qin,LIN Bin,YANG Chao,GUO Na,FANG Xiang,YANG Huan-huan,WANG Yi-yun,GAO Ke,DING Shuai,ZHANG Zhi,DUAN Ji-lin,CHENHong-qi,SU Deng-kui,FENG Jun,LIU Zhi-bo,WEIShao-gang,HE Wen,SONG Jun-long,LI Yan-bo,WEI Lu-jie.2016.Geological Characteristics and Exploration Model of the Tiegelongnan Cu(Au-Ag)Deposit:The First Ten Million Tons Metal Resources of a Porphyry-epithermal Deposit in Tibet[J].Acta Geoscientica Sinica,37(6):663-690(in Chinese with English abstract).
    TANG Ju-xing,SUN Xing-guo,DING Shuai,WANG Qin,WANGYi-yun,YANG Chao,CHEN Hong-qi,LI Yan-bo,WEI Lu-jie,ZHANG Zhi,SONG Jun-long,YANG Huan-huan,DUANJi-lin,GAO Ke,FANG Xiang,TAN Jiang-yun.2014.Discovery of the Epithermal Deposit of Cu(Au-Ag)in the Duolong Ore Concentration Area,Tibet[J].Acta Geoscientica Sinica,35(1):6-10(in Chinese with English abstract).
    TANG Ju-xing,WANG Qin,YANG Huan-huan,GAO Xin,ZHANG Ze-bin,ZOU Bing.2017.Mineralization,Exploration and Resource Potential of Porphyry-skarn-epithermal Copper Polymetallic Deposits in Tibet[J].Acta Geoscientica Sinica,38(5):571-613(in Chinese with English abstract).
    ULRICH M R,BODNAR R J.1988.Systematics of stretching of fluid inclusions.II.Barite at one atmosphere confining pressure[J].Economic Geology,83:1037-1046.
    ULRICH T,GUNTHER D,HEINRICH C A.2001.Evolution of a porphyry Cu-Au deposit,based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera,Argentina[J].Economic Geology,97(8):1888-1920.
    WANG Yi-yun,TANG Ju-xing,SONG Yang,LIN Bin,YANGChao,WANG Qin,GAO Ke,DING Shuai.2017.Geochemical Characteristics of Sulfur and Lead Isotopes from the Superlarge Tiegelongnan Copper(Gold-silver)Deposit,Tibet[J].Acta Geoscientica Sinica,38(5):627-637(in Chinese with English abstract).
    XIN Xiu,WANG Cui-zhi.2014.Fluid inclusion Characteristics of Alunite in Zijinshan Gold-copper Deposit,Fujian Province[J].Geoscience,28(1):42-50(in Chinese with English abstract).
    XUE Kai,RUAN Shi-kun.2008.Geological characteristics and genesis of the Luobuling Copper(Molybdenum)Deposit in Zijinshan Orefield,Fujian[J].Resources Environment&Engineering,22(5):491-496(in Chinese with English abstract).
    ZHONG Jun,CHEN Yan-jing,CHEN Jing,LI Jing,QI Jin-ping,DAI Mao-chang.2011.Fluid inclusion study of the Luoboling Porphyry Cu-Mo deposit in the Zijinshan ore field,Fujian Province[J].Acta Petrologica Sinica,27(5):1410-1424(in Chinese with English abstract).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700