斑岩-浅成低温热液成矿系统基本特征与研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Basic characteristics and research progress of porphyry epithermal HYDROTHERMAL METALLOGENIC SYSTEM
  • 作者:郭晓宇
  • 英文作者:GUO Xiao-yu;School of Earth Sciences,Chengdu University of Technology;
  • 关键词:斑岩型 ; 浅成低温热液 ; 成矿系统 ; 研究进展
  • 英文关键词:porphyry type;;epithermal type;;metallogenic system;;research progress
  • 中文刊名:COLO
  • 英文刊名:World Nonferrous Metals
  • 机构:成都理工大学地球科学学院;
  • 出版日期:2018-10-19 13:54
  • 出版单位:世界有色金属
  • 年:2018
  • 期:No.508
  • 语种:中文;
  • 页:COLO201816154
  • 页数:4
  • CN:16
  • ISSN:11-2472/TF
  • 分类号:274-277
摘要
一个理想的斑岩-浅成低温热液成矿系统包括富集于侵入岩体内的斑岩型矿床、交代碳酸盐岩围岩的矽卡岩型矿床和产于外围沉积岩中的细脉浸染型金矿床以及浅部的中高硫化浅成低温热液矿床。本文介绍了斑岩-浅成低温热液成矿系统的基本特征,认为系统内各矿化类型是同一岩浆系统不同演化阶段的产物。目前对这种成矿系统的主要研究进展包括:斑岩型矿化与浅成低温热液矿化之间的关系研究,研究方法和技术手段的更新为成矿系统研究提供更精确研究数据,以及用系统的观点开展同一成矿系统内部不同矿化类型矿床的勘查与找矿预测工作。
        An ideal porphyry-epithermal metallogenic system consists of porphyry-type deposits enriched in intrusive rocks,SKARN-TYPE deposits in metasomatic carbonate country rocks,veinlet-disseminated gold deposits in peripheral sedimentary rocks and shallow epithermal deposits of medium-high sulfide.The basic characteristics of porphyry-epithermal metallogenic system are introduced in this paper.It is considered that the mineralization types in the system are the products of different evolution stages of the same magmatic system.The main research progresses in this metallogenic system include:the relationship between porphyry mineralization and epithermal mineralization,the updating of research methods and technical means to provide more accurate data for the study of metallogenic system,and the exploration of different mineralized deposits within the same metallogenic system from a systematic point of view.And prospecting prediction.
引文
[1]陈衍景.2013.大陆碰撞成矿理论的创建及应用[J].岩石学报,29(1):1-17.
    [2]侯增谦.2004.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,11(1):131-144.
    [3]侯增谦.2010.大陆碰撞成矿论[J].地质学报,84(1):30-58.
    [4]侯增谦,杨志明.2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,83(12):1779-1817.
    [5]江思宏,聂凤军,张义,等.2004.浅成低温热液型金矿床研究最新进展[J].地学前缘,11(2):401-411.
    [6]刘文元.2015.福建紫金山斑岩-浅成热液成矿系统的精细矿物学研究[D].北京:中国地质科学院.
    [7]毛景文,罗茂澄,谢桂青,等.斑岩铜矿床的基本特征和研究勘查新进展[J].地质学报,2014,88(12):2153-2175.
    [8]曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,20(4):355-366.
    [9]芮宗瑶,黄崇轲,齐国明,等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社.
    [10]唐菊兴,孙兴国,丁帅,等.2014.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J].地球学报,35(1):6-10.
    [11]唐菊兴,宋扬,王勤,等.2016.西藏铁格隆南铜(金银)矿床地质特征及勘查模型--西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报,37(6):663-690.
    [12]王福同,冯京,胡建卫,等.2001.新疆土屋大型斑岩铜矿床特征及发现意义[J].中国地质,28(1):36-39.
    [13]熊欣,徐文艺,贾丽琼,等.2014.斑岩铜矿成矿构造背景研究进展[J].地球科学进展,29(2):250-264.
    [14]杨波,赵元艺.2017.南蒙古欧玉陶勒盖斑岩型矿床研究进展[J].地质通报,36(1):90-111.
    [15]张德全,佘宏全,李大新,等.2003.紫金山地区的斑岩-浅成热液成矿系统[J].地质学报,77(2):253-261.
    [16]邹国富,坚润堂.斑岩铜矿矿床研究综述[J].云南地质,2011,30(4):387-393.
    [17]Cooke D R.2005.Giant Porphyry Deposits:Characteristics,Distribution,and Tectonic Controls[J].Economic Geology,100(5):801-818.
    [18]C a o M J,H o l l i n g s P,C o o k e D R,e t a l.2 0 1 8.Physicochemical Processes in the Magma Chamber under the Black Mountain Porphyry Cu-Au Deposit,Philippines:Insights from Mineral Chemistry and Implications for Mineralization[J].Economic Geology,2018,113(1):63-82.
    [19]Groves D I,Goldfarb R J,Gebre-Mariam M,et al.1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types[J].Ore Geology Reviews,13(1-5):7-27.
    [20]Halley S,Dilles J H,Tosdal R M.2015.Footprints:Hydrothermal Alteration and Geochemical Dispersion Around Porphyry Copper Deposits[J].SEG Newsletter,100:1,12-17.
    [21]Hedenquist J W,Lowenstern J B.1994.The role of magmas in the formation of hydrothermal ore deposits[J].Nature,370(6490):519-527.
    [22]Hedenquist J W,Arribas A R,Jr.,Reynolds T J.1998.Evolution of An Intrusion-Centered Hydrothermal System:Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits,Philippines[J].Economic Geology,93(4):373-404.
    [23]Hollister V F.1978.Geology of the Porphyry Copper Deposits of the Western Hemisphere[M].New York:Society of Mining Engineers.
    [24]Lang J R.2000.An Exploration Model for Intrusion-Related Gold Systems[J].SEG Newsletter,40:1,6-15.
    [25]Lang J R,Gregory M J,Rebagliati M,et al.2013.Geology and Magmatic-Hydrothermal Evolution of the Giant Pebble Porphyry Copper-Gold-Molybdenum Deposit,Southwest Alaska[J].Economic Geology,108(3):437-462.
    [26]Lowell J D,Guilbert J M.1970.Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposit[J].Economic Geology,65(4):373-408.
    [27]Large S J E,Quadt A V,Wotzlaw J F,et al.2018.Magma Evolution Leading to Porphyry Au-Cu Mineralization at the Ok Tedi Deposit,Papua New Guinea:Trace Element Geochemistry and High-Precision Geochronology of Igneous Zircon[J].Economic Geology,113(1):39-61.
    [28]Rinne M L,Cooke D R,Harris A C,et al.Geology and Geochronology of the Golpu Porphyry and Wafi Epithermal Deposit,Morobe Province,Papua New Guinea[J].Economic Geology,2018,113(1):271-294.
    [29]Sillitoe R H.2010.Porphyry Copper System[J].Economic Geology,105(1):3-41.
    [30]Sillitoe R H.2012.Copper Provinces[M].//Hedenquist J W,Harris M,Camus F.Geology and Genesis of Major Copper Deposits and Districts of the world:A Tribute to Richard H.Sillitoe,Littleton:Special Publications of the Society of Economic Geologist,No.16:1-18.
    [31]Sillitoe R H.2018.Why No Porphyry Copper Deposits in Japan and South Korea?[J].Resource Geology,68(2):107-125.
    [32]Wilkinson J J.2013.Triggers for the Formation of Porphyry Ore Deposits in Magmatic Arcs[J].Nature Geoscience,6(11):917-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700