萌芽菊芋块茎对盐碱土壤胁迫的生理响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological response of sprouting Jerusalem artichoke tubers to saline-alkali stress
  • 作者:韩东洺 ; 张喜洋 ; 庞秋颖 ; 阎秀峰
  • 英文作者:HAN Dongming;ZHANG Xiyang;PANG Qiuying;YAN Xiufeng;Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field,Ministry of Education,Alkali Soil Natural Environmental Science Center,Northeast Forestry University;
  • 关键词:菊芋 ; 萌芽块茎 ; 生理响应 ; 盐碱土壤
  • 英文关键词:Jerusalem artichoke(Helianthus tuberosus);;sprouting tubers;;physiological response;;alkaline soil
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学盐碱地生物资源环境研究中心,东北油田盐碱植被恢复与重建教育部重点实验室;
  • 出版日期:2017-02-23
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(31470467)
  • 语种:中文;
  • 页:STXB201704020
  • 页数:8
  • CN:04
  • ISSN:11-2031/Q
  • 分类号:187-194
摘要
土壤盐碱化是影响全球农业生产和生态环境的重要问题。在农田、轻度盐碱草地和重度盐碱草地设置样地以块茎种植菊芋,次年5月块茎萌发阶段取块茎样品测定丙二醛、游离脯氨酸、可溶性糖含量以及抗氧化酶活性并进行蛋白质组学分析,分析了萌芽菊芋块茎对盐碱土壤胁迫的生理响应。0—20 cm土层的电导率(表征土壤可溶盐含量)表明从农田到轻度、重度盐碱草地土壤盐碱胁迫逐渐增强,丙二醛含量变化反映出菊芋块茎受害程度逐渐增加,并且基于游离脯氨酸的渗透调节能力也在逐渐增强。蛋白质组学分析结果显示与遗传信息加工相关的差异蛋白数量最多(占28.75%)且多为表达上调,意味着DNA复制和转录、蛋白质合成和折叠的相关蛋白在响应盐碱胁迫中发挥关键作用。碳水化合物及多糖代谢(占15%)、氨基酸代谢(占11.25%)以及能量代谢(占7.5%)相关的差异蛋白数量也较多,说明调节物质代谢平衡在萌芽菊芋块茎应对盐碱土壤胁迫过程中有重要作用。这些结果为揭示萌芽菊芋块茎适应盐胁迫的生理机制奠定了基础。
        Soil salinization is one of the most common abiotic stresses affecting plant growth and is becoming an important issue,owing to its impact on agricultural production and the environment. Saline-alkali soil is becoming particularly widespread and may cover more than 50% of all arable lands by the year 2050. The combination of soil salinization and high pH conditions represents a major impediment for plant growth and crop productivity. The study area was a typical alkalinized grassland in northeastern China. Jerusalem artichoke( Helianthus tuberosus) is an annual flowering plant that has been cultivated as a vegetable, fodder crop, and bioenergy material in many countries, owing to its high levels of polysaccharides,especially inulin. The ability to survive in the saline-alkali soils of semiarid areas is one of the most important characters of Jerusalem artichoke. Jerusalem artichoke tubers were sown in farmland,light saline-alkali,or severe saline-alkali soil and sprouting tubers were collected from the sample in May of the following year. The malondialdehyde,free proline,and soluble sugar contents,antioxidant enzyme activity,and protein profile were quantified,in order to assess the physiological response of Jerusalem artichoke to saline-alkali stress. The soil electrical conductivity( 0-20 cm) indicated that the soluble salt contents of the three soil types were significantly different,with the lowest soluble salt content in the farmland soil and the greatest content in the severe saline-alkali soil. With increasing soluble salt content, the malondialdehyde content increased,obviously indicating higher levels of stress,and increased free proline content indicated that Jerusalem artichoke could enhance its resistance to salt stress via osmotic adjustment. To investigate the proteomic response of the sprouting tubers to saline-alkali stress,two-dimensional gel electrophoresis( 2-DE) gels from three biological experiments were analyzed. Then,using ImageM aster 2D Platinum Software,we identified more than 1000 highly reproducible protein spots on the coomassie brilliant blue( CBB)-stained 2D gels. A total of 80 differentially expressed proteins were successfully identified using MALDI-TOF/TOF analysis,according to the peptide matching results provided by MASCOT. Among these proteins,42 were detected in the sprouting H. tuberosus tubers from the light saline-alkali soil and 38 of the proteins accumulated differentially in the tubers grown in the severe saline-alkali soil. KEGG pathway analysis attributed these proteins to eleven different metabolic pathways,which included carbohydrate and polysaccharide metabolism( 15%),energy metabolism( 7. 5%),genetic information processing( 28. 75%),amino acid metabolism( 11.25%),nucleotide metabolism( 2.5%),biosynthesis of secondary metabolites( 3.75%),signal transduction( 17.5%),transport and catabolism( 2.5%),cell motility( 2.5%),and unknown( 8.75%). The differentially expressed proteins were mainly involved in genetic information processing,which might indicate that the regulation of proteins involved in DNA replication,transcription,protein synthesis,and protein folding are responsive to saline-alkali stress and play a pivotal role in salinity tolerance. Carbohydrate,energy,and amino acid metabolism-related proteins constituted one-third of the differentially expressed proteins,which suggests that metabolism homeostasis is important for the survival of seedlings exposed to salinealkali stress. These findings provide new insight into the underlying molecular mechanisms of saline-alkali resistance in Jerusalem artichoke.
引文
[1]Wang W X,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance.Planta,2003,218(1):1-14.
    [2]阎秀峰,李一蒙,王洋.改良松嫩盐碱草地的优良植物---菊芋.黑龙江大学:自然科学学报,2008,25(6):812-816.
    [3]隆小华,刘兆普,刘玲,陈铭达,郑青松.不同浓度海水胁迫对菊芋幼苗生长发育及磷吸收的影响.植物研究,2004,24(3):331-334.
    [4]刘兆普,邓力群,刘玲,綦长海,陈铭达,夏天翔.莱州海涂海水灌溉下菊芋生理生态特性研究.植物生态学报,2005,29(3):474-478.
    [5]隆小华,刘兆普,蒋云芳,陈铭达,王琳.海水处理对不同产地菊芋幼苗光合作用及叶绿素荧光特性的影响.植物生态学报,2006,30(5):827-834.
    [6]Zhao G M,Liu Z P,Chen M D,Kou W F.Effect of saline aquaculture effluent on salt-tolerant Jerusalem artichoke(Helianthus tuberosus L.)in a semi-arid coastal area of China.Pedosphere,2006,16(6):762-769.
    [7]薛延丰,刘兆普.外源钙离子缓解海水胁迫下菊芋光合能力下降的研究.草业学报,2007,16(6):74-80.
    [8]Xue Y F,Liu Z P.Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress.Russian Journal of Plant Physiology,2008,55(6):776-781.
    [9]Zhao G M,Liu Z P,Chen M D,Guo S W.Soil properties and yield of Jerusalem artichoke(Helianthus tuberosus L.)with seawater irrigation in North China Plain.Pedosphere,2008,18(2):195-202.
    [10]Long X H,Chi J H,Liu L,Li Q,Liu Z P.Effect of seawater stress on physiological and biochemical responses of five Jerusalem artichoke ecotypes.Pedosphere,2009,19(2):208-216.
    [11]王建绪,刘兆普,隆小华,赵耕毛.海水浇灌对菊芋生长、光合及耗水特征的影响.土壤通报,2009,40(3):606-609.
    [12]赵耕毛,刘兆普,张博,王建绪.北方半湿润滨海地区海水养殖废水灌溉菊芋研究.灌溉排水学报,2009,28(2):9-12.
    [13]Long X H,Huang Z R,Zhang Z H,Li Q,Rengel Z,Liu Z P.Seawater stress differentially affects germination,growth,photosynthesis,and ion concentration in genotypes of Jerusalem artichoke(Helianthus tuberosus L.).Journal of Plant Growth Regulation,2010,29(2):223-231.
    [14]Zhao G M,Mehta S K,Liu Z P.Use of saline aquaculture wastewater to irrigate salt-tolerant Jerusalem artichoke and sunflower in semiarid coastal zones of China.Agricultural Water Management,2010,97(12):1987-1993.
    [15]Chen Q,Zhang M D,Shen S H.Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke(Helianthus tuberosus L.).Acta Physiologiae Plantarum,2011,33(2):273-278.
    [16]Huang Z R,Long X H,Wang L,Kang J,Zhang Z H,Zed R,Liu Z P.Growth,photosynthesis and H+-ATPase activity in two Jerusalem artichoke varieties under Na Cl-induced stress.Process Biochemistry,2012,47(4):591-596.
    [17]Huang Z R,Zhao L,Chen D D,Liang M X,Liu Z P,Shao H B,Long X H.Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets.PLo S One,2013,8(4):e62085.
    [18]Long X H,Ni N,Wang L,Wang X H,Wang J X,Zhang Z H,Zed R,Liu Z P,Shao H B.Phytoremediation of cadmium-contaminated soil by two Jerusalem artichoke(Helianthus tuberosus L.)genotypes.Clean-Soil,Air,Water,2013,41(2):202-209.
    [19]冯大伟,张洪霞,刘广洋,靳志明,刘胜一,衣悦涛.黄河三角洲盐胁迫对不同品种菊芋幼苗生长及生理特性的影响.中国农学通报,2013,29(36):155-159.
    [20]Shao T Y,Li L L,Wu Y W,Chen M X,Long X H,Shao H B,Liu Z P,Rengel Z.Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.Science of the Total Environment,2016,568:891-898.
    [21]鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000.
    [22]费伟,陈火英,曹忠,刘杨.盐胁迫对番茄幼苗生理特性的影响.上海交通大学学报:农业科学版,2005,23(1):5-9.
    [23]刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,2005,31(4):389-395.
    [24]张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003.
    [25]夏天翔,刘兆普,王景艳.盐分和水分胁迫对菊芋幼苗离子吸收及叶片酶活性的影响.西北植物学报,2004,24(7):1241-1245.
    [26]Pang Q Y,Chen S X,Dai S J,Chen Y Z,Wang Y,Yan X F.Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.Journal of Proteome Research,2010,9(5):2584-2599.
    [27]陈建中,章镇,戴剑.植物蛋白质合成延伸因子.植物生理学通讯,2002,38(4):406-411.
    [28]Bai J H,Liu J H,Jiao W H,Sa R,Zhang N,Jia R Z.Proteomic analysis of salt-responsive proteins in oat roots(Avena sativa L.).Journal of the Science of Food and Agriculture,2016,96(11):3867-3875.
    [29]Yan S P,Tang Z C,Su W A,Sun W N.Proteomic analysis of salt stress-responsive proteins in rice root.Proteomics,2005,5(1):235-244.
    [30]Sharbatkhari M,Shobbar Z S,Galeshi S,Nakhoda B.Wheat stem reserves and salinity tolerance:molecular dissection of fructan biosynthesis and remobilization to grains.Planta,2016,244(1):191-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700