低营养水体中芽孢杆降解有机氮的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Organic nitrogen removal by Bacillus strains in water body under low nutrition level
  • 作者:黄海洪 ; 陈倩 ; 类延菊 ; 欧芳 ; 李俊仪 ; 邹万生 ; 杨品红
  • 英文作者:HUANG Haihong;CHEN Qian;LEI Yanju;OU Fang;LI Junyi;ZOU Wansheng;YANG Pinhong;Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area,Collaborative Innovation Center for Efficient and Health Production of Fisheries, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science;
  • 关键词:低营养水体 ; 芽孢杆 ; 生长 ; 有机氮 ; 降解 ; 模型
  • 英文关键词:low nutrient level;;Bacillus strain;;growth;;organic nitrogen;;degradation;;statistic model
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:湖南文理学院环洞庭湖水产健康养殖及加工湖南省重点实验室水产高效健康生产湖南省协同创新中心动物学湖南省高校重点实验室;
  • 出版日期:2018-08-27 15:33
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家星火计划项目(No.2015GA770001);; 中央引导地方科技发展专项(No.2017CT5013);; 湖南省科技计划项目(No.2016NK2132);; 湖南省教育厅科学研究项目(No.16C1085);; 湖南省“动物学”重点建设学科项目
  • 语种:中文;
  • 页:HJXX201902006
  • 页数:11
  • CN:02
  • ISSN:11-1843/X
  • 分类号:50-60
摘要
芽孢杆具有降解有机氮的功能,但在养殖水体等低营养水体中,其降解效果可能受到影响.为研究低营养水体中有机氮的降解情况,通过模拟凡纳滨对虾中间培育过程配制低营养水体,分别接种芽孢杆NT9和YB3(NT9水体和YB3水体),然后研究水体中微生物的生长与有机氮的降解情况,并构建数学模型进行分析.结果显示,起始接种量为10×10~5 cfu·mL~(-1)时,NT9水体总量呈下降趋势,平均为(3.46×10~5±2.39×10~5) cfu·mL~(-1),YB3水体总量则上升到(25.43×10~5±8.84×10~5) cfu·mL~(-1),但均高于未接种的对照水体.NT9水体和YB3水体的有机氮降解率显著高于对照水体(p<0.05),分别提高50.28%和119.41%,降解速率也分别提高65.22%和121.74%.对照水体、NT9水体和YB3水体单位量的有机氮降解效率分别为1.238、1.649和1.904 mg·L~(-1),降解模型分别为y=-6.40+1.39x_1+1.45x_2、y=2.11+8.21x_3-0.64x_4-1.26x_1x_3-0.32x_2x_4和y=1.73+6.11x_2(x_1、x_2、x_3、x_4分别表示总量、总增量、有机氮含量和时间).研究表明,在低营养水体中接种芽孢杆有利于有机氮的降解,但不同的株具有不同的降解模式,株YB3为能够适应低营养水平、增殖能力较强的株,可以更有效地促进有机氮的降解,提高降解效率.
        Strains of Bacillus sp. are common probiotics with organic nitrogen(Org-N) degrading function. However the efficiency would be compromised under low nutrient level, such as aquaculture water body. For investigating the degradation of Org-N in such water, two Bacillus strains of NT9 and YB3 were inoculated into microcosm aquaculture water simulated according to the nursery process of Litopenaeus vannamei postlarvae, and the water bodies were named as NT9-WB and YB3-WB, respectively. Thereafter, the growth of microorganism and the degradation of Org-N in those two water bodies were determined, and statistic models were constructed to explore the possible approaches for improving Org-N degradation. Results showed that with a initial inoculation content of 10×10~5 cfu·mL~(-1), the mean microbial colonies in the NT9-WB declined to(3.46×10~5±2.39×10~5) cfu·mL~(-1), and elevated to(25.43×10~5±8.84×10~5) cfu·mL~(-1) in the YB3-WB, both of which were all higher than that in the control water body(C-WB) without inoculation of strain. The degraded ratios of Org-N in both NT9-and YB3-WB were significantly higher than that in C-WB(p<0.05), increased by 50.28% and 119.41%, respectively. Furthermore, the Org-N degrading rates of NT9-WB and YB3-WB also elevated 65.22% and 121.74%, respectively, when compared to C-WB. In C-, NT9-and YB3-WB, the degrading rates were 1.238, 1.649, 1.904 mg·L~(-1) per unit of colony forming units(cfu), and the Org-N degradation models were y=-6.40+1.39x_1+1.45x_2, y=2.11+8.21x_3-0.64x_4-1.26x_1x_3-0.32x_2x_4 and y=1.73+6.11x_2(x_1, x_2, x_3 and x_4 represented cfu, cfu increment, Org-N concentration and time), respectively. In conclusion, both Bacillus strains improved the degradation of Org-N in low nutrient level water, but with different degrading style, and the strain YB3 had a high adaptation ability to low nutrient level and could elevate the degradation of Org-N more efficiently.
引文
Arantes R,Schveitzer R,Magnotti C,et al.2017.A comparison between water exchange and settling tank as a method for suspended solids management in intensive biofloc technology systems: effects on shrimp (Litopenaeus vannamei) performance,water quality and water use[J].Aquaculture Research,48(4):1478-1490
    Arrigo K R.2005.Marine microorganisms and global nutrient cycles[J].Nature,437(7057):349-355
    Asaduzzaman M,Wahab M A,Mcj V,et al.2008.C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds [J].Aquaculture,280(1/4):117-123
    Avnimelech Y.1999.Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,176(3):227-235
    Avnimelech Y.2015.Biofloc Technology:A Practical Hand Book(3rd ed)[M].Baton Rouge,Louisiana,EUA:The World Aquaculture Society.1-258
    Danaher J J,Shultz R C,Rakocy J E.2011.Evaluation of two textiles with or without polymer addition for dewatering effluent from an intensive biofloc production system[J].Journal of the World Aquaculture Society,42(1):66-72
    董志颖,洪慢,胡晗静,等.2018.过量氮输入对寡营养海水细群落代谢潜力的影响[J].环境科学学报,38(2):457-466
    Ebeling J M,Timmons M B,Bisogni J J.2006.Engineering analysis of the stoichiometry of photoautotrophic,autotrophic,and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J].Aquaculture,257(1/4):346-358
    Emerenciano M,Ballester E L C,Cavalli R O,et al.2011.Effect of biofloc technology(BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis:growth performance,floc composition and salinity stress tolerance[J].Aquaculture International,19(5):891-901
    冯敏毅,马甡,文国樑,等.2006.水产养殖环境生物修复技术的研究进展[J].海洋科学,30(9):84-87
    Ferreira G S,Bolivar N C,Pereira S A,et al.2015.Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei[J].Aquaculture,448:273-279
    Ferreira M G P,Melo F P,Lima J P V,et al.2017.Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc[J].Latin American Journal of Aquatic Research,45(1):167-176
    Fungesmith S J,Mrp B.1998.Nutrient budgets in intensive shrimp ponds:implications for sustainability[J].Aquaculture,164(1/4):117-133
    高权新,施兆鸿,彭士明.2013.益生在水产养殖中的研究进展[J].海洋渔业,35(3):364
    国家环境保护总局.2002.水和废水监测分析方法(第四版)[M].北京:中国环境出版社.268-274
    杭小英,周冬仁,罗毅志,等.2015.地衣芽孢杆的生长及对养殖水体中残饵的降解特性[J].江苏农业科学,43(3):206-208
    Hari B,Kurup B M,Varghese J T,et al.2004.Effects of carbohydrate addition on production in extensive shrimp culture systems[J].Aquaculture,241(1/4):179-194
    黄海洪,贺莉,类延菊,等.2018.一株芽孢杆在低氮源浓度培养基中的生长与氨氮去除特性[J].环境科学学报,38(1):183-192
    康鹏亮,张海涵,黄廷林,等.2018.湖库沉积物好氧反硝化群脱氮特性及种群结构[J].环境科学,39(5):1-10
    Kuhn D D,Boardman G D,Lawrence A L. 2009.Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed[J].Aquaculture,296(1/2):51-57
    Kumar S,Anand P S S,De D,et al.2017.Effects of biofloc under different carbon sources and protein levels on water quality,growth performance and immune responses in black tiger shrimp Penaeus monodon(Fabricius,1978)[J].Aquaculture Research,48(3):1168-1182
    Lara G,Krummenauer D,Abreu P C,et al.2017.The use of different aerators on Litopenaeus vannamei biofloc culture system:effects on water quality,shrimp growth and biofloc composition[J].Aquaculture International,25(1):147-162
    李木明.2016.降解有机质芽胞杆的筛选及其净化模拟污染水体的特性[D].厦门:华侨大学
    雷衍之.2015.养殖水环境化学[M].北京:中国农业出版社.1-371
    Lekang O I.2013.Aquaculture Engineering (2nd Edition)[M].Chichester,UK:Willey-Blackwell.1-429
    Lin Y,Chen J.2001.Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels[J].Journal of Experimental Marine Biology and Ecology,259(1):109-119
    刘健康.2005.高级水生生物学[M].北京:科学出版社.156-172
    Luo L,Zhao Z,Huang X,et al.2016.Isolation,identification,and optimization of culture conditions of a bioflocculant-producing bacterium Bacillus megaterium SP1 and its application in aquaculture wastewater treatment[J].BioMed Research International,2016:2758168
    麦康森.2015.水产动物营养与饲料学[M].北京:中国农业出版社.1-327
    麦贤杰,黄伟健,叶富良,等.2009.对虾健康养殖学[M].北京:海洋出版社.263-281
    Martínez-Córdova L R,Emerenciano M,Miranda-Baeza A,et al.2015.Microbial‐based systems for aquaculture of fish and shrimp:an updated review[J].Reviews in Aquaculture,7(2):131-148
    明道绪.2014.生物统计附试验设计(第四版)[M].北京:中国农业出版社.156-199
    Prata Gaona C A,de Almeida M S,Viau V,et al.2017.Effect of different total suspended solids levels on a Litopenaeus vannamei(Boone,1931) BFT culture system during biofloc formation[J].Aquaculture Research,48(3):1070-1079
    齐振雄,李德尚,张曼平,等.1998.对虾养殖池塘氮磷收支的实验研究[J].水产学报,22(2):124-128
    Rafael Martinez-Cordova L,Martinez-Porchas M,Coelho Emerenciano M G,et al.2017.From microbes to fish the next revolution in food production[J].Critical Reviews in Biotechnology,37(3):287-295
    Rittmann B E,McCarty P L.2002.Environmental Biotechnology :Principles and Applications[M].New York:McGraw-Hill.754
    沈萍,陈向东.2013.微生物学实验(第4版)[M].北京:高等教育出版社.1-275
    万崇华,罗家洪.2014.高级医学统计学[M].北京:科学出版社.45-47
    谢航,邱宏端,王秀彬,等.2008.地衣芽孢杆降解水产养殖中残余饵料的特性研究[J].渔业研究,9(3):31-35
    闫法军,田相利,董双林,等.2013.刺参养殖池塘降解有机污染物常、低温芽孢杆的分离筛选[J].中国海洋大学学报(自然科学版),43(6):17-24
    乐毅全,王士芬.2011.环境微生物学(第2版)[M].北京:化学工业出版社.166-170
    张庆华,封永辉,王娟,等.2011.地衣芽孢杆对养殖水体氨氮、残饵降解特性研究[J].水生生物学报,35(3):498-503
    周广静,张晓波,朱笔通,等.2017.海洋着色菌YL28对含沉积物的海水养殖水体氮污染去除效应的研究[J].氨基酸和生物资源,39(6):441-447
    周国庆,李华,张东升,等.2016.3株芽孢杆对刺参池塘有机物的降解效果及鉴定[J].大连海洋大学学报,31(1):19-23
    邹万生,刘良国,张景来,等.2011.固定化藻对去除珍珠蚌养殖废水氮磷的效果分析[J].农业环境科学学报,30(4):720-725

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700