西南印度洋中脊热液区烃类有机质组成及其成因意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Composition and genesis implications of hydrocarbons in 49.6°E hydrothermal area,Southwest Indian Ocean Ridge
  • 作者:雷吉江 ; 初凤友 ; 于晓果 ; 李小虎 ; 陶春辉 ; 葛倩
  • 英文作者:LEI Jijiang;CHU Fengyou;YU Xiaoguo;LI Xiaohu;TAO Chunhui;GE Qian;Key Laboratory of Submarine Geosciences of SOA;Second Institute of Oceanography,SOA;Key Laboratory of Marine Biogenetic Resources of SOA;
  • 关键词:超慢速扩张洋脊 ; 热液喷口 ; 烃类有机质 ; 生物标志物
  • 英文关键词:ultraslow-spreading ridge;;hydrothermal vent;;hydrocarbon;;biomarkers
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:国家海洋局海底科学重点实验室;国家海洋局第二海洋研究所;国家海洋局海洋生物遗传资源重点实验室;
  • 出版日期:2014-04-17 16:34
  • 出版单位:地学前缘
  • 年:2015
  • 期:v.22;No.111
  • 基金:国家自然科学基金项目(40976039,41106045,41176045,41276055);; 国家海洋局第二海洋研究所基本科研业务专项资助项目(JG1202,JT1102);; 国家海洋局海洋生物遗传资源重点实验室开放基金项目(HY201204);; 国家海洋局“大洋十二五”项目(DY125-11-E-04)
  • 语种:中文;
  • 页:DXQY201501027
  • 页数:10
  • CN:01
  • ISSN:11-3370/P
  • 分类号:285-294
摘要
利用气相色谱(GC)、气相色谱-质谱联用仪(GC-MS)测定了西南印度洋中脊49.6°E热液区热液产物中的可溶有机质,结合生物标志物和单体同位素分析,对烃类有机质的组成、来源及成因意义进行了探讨。硫化物烟囱体以正构烷烃(3.437~3.962μg/g)为主要烃类,L/H<1,C22以上烷烃具有轻微奇碳数优势(CPI=1.140~1.209),NAR接近0;生物标志物类型丰富(Sq、IS40、烷基环己烷),C31藿烷22S/(R+S)高达0.77,且缺少17β(H),21β(H)构型藿烷;低碳数饱和脂肪酸为主要脂肪酸类型,异构/反异构脂肪酸含量显著,缺少单不饱和脂肪酸。热液蚀变岩以异构烷烃(2.094μg/g)为主要烃类,正构烷烃以低碳数(L/H=1.33)、偶碳优势(CPI=0.377)为特征;脂肪酸以单不饱和脂肪酸为主。结果表明,海洋原生生物体是49.6°E热液区主要的烃类有机质输入源,热液流体温度及化学条件是控制热液喷口区原生生物群落分布及热液产物中烃类有机质组成的主要因素。生物标志物类型显示硫化物烟囱体中具有产甲烷古菌与硫酸盐还原菌共存的现象,反映出热液流体中富含H2,表明49.6°E热液区具有非生物合成烃类的可能。
        Molecular composition of extractable and detectable organic matter in hypothermal product from49.6°E hydrothermal vent field were analyzed by GC and GC-MS.Combined with the analysis of biomarkers and individual isotopic composition,we discussed the composition,origin and genetic implication of hydrocarbons.N-alkanes(3.437-3.962μg/g)are the main hydrocarbon of sulfide chimney,with low L/H ratio(<1)and slight odd carbon number predominance in>C22alkanes(CPI=1.140-1.209);NAR is close to 0.Sulfide chimney has a variety of biomarkers(Sq,IS40,cyclohexylalkanes);22S/(R+S)of C31 hopanes achieved 0.77;17β(H)and 21β(H)-hopanes were absent.The fatty acid of sulfide chimney is comprised of short chain saturated fatty acid and iso/anti-iso fatty acid,and lacks monounsaturated fatty acids.Iso-alkanes(2.094μg/g)are the main hydrocarbon of hydrothermal altered rock;n-alkanes are characterized by more low carbon(L/H=1.33)and even carbon number predominance(CPI=0.377);monounsaturated fatty acids are the most abundant fatty acid.These results suggested that the autochthonous organisms were the major source of hydrocarbons in 49.6°E hydrothermal area,and that the temperature and chemical condition of hydrothermal fluid constrained the distribution of hydrothermal community and the composition of hydrocarbon of hydrothermal product.The molecular evidence for the abiogenic synthesis of organic compounds was rare,however,the coexistence of methanogens and sulfate reducing bacteria indicated that H2 were rich in hydrothermal fluids of 49.6°E vent and the abiogenic synthesis approach could not be neglected.
引文
[1]Lein A Y,Peresypkin V I,Simoneit B.Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge[J].Lithology and Mineral Resources,2003,38(5):383-393.
    [2]Simoneit B,Lein A Y,Peresypkin V I,et al.Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field(Mid-Atlantic Ridge at 36degrees N)[J].Geochimica et Cosmochimica Acta,2004,68(10):2275-2294.
    [3]Voglesonger K M,Holloway J R,Dunn E E,et al.Experimental abiotic synthesis of methanol in seafloor hydrothermal systems during diking events[J].Chemical Geology,2001,180:129-139.
    [4]Seewald J S,Zolotov M Y,Mccollom T.Experimental investigation of single carbon compounds under hydrothermal conditions[J].Geochimica et Cosmochimica Acta,2006,70(2):446-460.
    [5]Fu Q,Lollar B S,Horita J,et al.Abiotic formation of hydrocarbons under hydrothermal conditions:Constraints from chemical and isotope data[J].Geochimica et Cosmochimica Acta,2007,71(8):1982-1998.
    [6]Bach W,Paulick H,Garrido C J,et al.Unraveling the sequence of serpentinization reactions:Petrography,mineral chemistry,and petrophysics of serpentinites from MAR 15degrees N(ODP Leg 209,Site 1274)[J].Geophysical Research Letters,2006,33(L1330613):1-4.
    [7]Proskurowski G,Lilley M D,Seewald J S,et al.Abiogenic hydrocarbon production at Lost City hydrothermal field[J].Science,2008,319:604-607.
    [8]李小虎,初凤友,雷吉江,等.现代海底超镁铁质岩系热液系统与地质意义[J].海洋地质与第四纪地质,2008,28(4):133-139.
    [9]Bazylinski D A,Farrington J W,Jannasch H W.Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site[J].Organic Geochemistry,1988,12(6):547-558.
    [10]Simoneit B R T,Brault M,Saliot A.Hydrocarbons associated with hydrothermal minerals,vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge[J].Applied Geochemistry,1990,5(1/2):115-124.
    [11]Rushdi A I,Simoneit B R T.Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean Part 1.Middle Valley,Juan de Fuca Ridge[J].Applied Geochemistry,2002,17:1401-1428.
    [12]Volkman J K.Marine Organic Matter:Biomarkers,Isotopes,and DNA[M].Berllin:Springer-Verlag,2006:28-70.
    [13]Nishimura M,Baker E W.Possible origin of n-alkane with a remarkable even to odd predominance in recent marine sediments[J].Geochimica et Cosmochimica Acta,1986,50:299-305.
    [14]Mille G,Asia L,Guiliano M,et al.Hydrocarbons in coastal sediments from the Mediterranean sea(Gulf of Fos area,France)[J].Marine Pollution Bulletin,2007,54(5):566-575.
    [15]Holm N G,Charlou J L.Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system,Mid-Atlantic Ridge[J].Earth and Plantary Science Letters,2001,191(1/2):1-8.
    [16]Delacour A,Fruh-Green G L,Bernasconi S M,et al.Carbon geochemistry of serpentinites in the Lost City hydrothermalsystem(30°N,MAR)[J].Geochimica et Cosmochimica Acta,2008,72(15):3681-3702.
    [17]Konn C,Holm N G,Donval J P,et al.Organic compounds in hydrothermal fluids from ultramafic-hosted vents of the Mid Atlantic Ridge:An update on composition and origin[J].Geochimica et Cosmochimica Acta,2009,73(13):A679.
    [18]Venkatesan M I,Ruth E,Rao P S,et al.Hydrothermal petroleum in the sediments of the Andaman Backarc Basin,Indian Ocean[J].Applied Geochemistry,2003,18(6):845-861.
    [19]Simoneit B R T,Goodfellow W D,Franklin J M.Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley,Northern Juan de Fuca Ridge[J].Applied Geochemistry,1992(7):257-264.
    [20]雷吉江.西南印度洋中脊与劳盆地热液区类脂类生物标志化合物组成及地质意义[D].武汉:中国地质大学(武汉),2012.
    [21]Zhang C L,Pancost R D,Sassen R,et al.Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J].Organic Geochemistry,2003,34(6):827-836.
    [22]Zhang C L,Li Y L,Wall J D,et al.Lipid and carbon isotopic evidence of methane-oxdizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J].Geology,2002,41(3):239-242.
    [23]Schouten S,Wakeham S G,Hopmans E C,et al.Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane[J].Applied and Environmental Microbiology,2003,69(3):1680-1686.
    [24]Sprott G D,Meloche M,Richards J C.Propotions of diether,macrocyclic diether,and tetraether lipids in Methanococcus Jannaschii grown at different temperatures[J].Journal of Bacteriology,1991,173:3907-3910.
    [25]Arakawa K,Eguchi T,Kakinuma K.36-membered macrocyclic diether lipid is advantageous for archaea to thrive under the extreme thermal environments[J].Bulletin of the Chemical Society of Japan,2001,74:347-356.
    [26]Brault M,Simoneit B R T,Marty J C,et al.Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise,13°N[J].Organic Geochemistry,1988,12:209-219.
    [27]Didyk B M,Simoneit B.Petroleum characteristic of the oil in a Guaymas Basin hydrothermal chimney[J].Applied Geochemistry,1990,5(1/2):29-40.
    [28]侯读杰,王铁冠,黄光辉.烃源岩中支链烷烃化合物的检出及意义[J].石油勘探与开发,1996,23(4):20-24.
    [29]Burkl-Vitzthum V,Bounaceur R,Marquaire P M,et al.Thermal evolution of n-and iso-alkanes in oils.Part 1:Pyrolysis model for a mixture of 78alkanes(C1—C32)including 13206free radical reactions[J].Organic Geochemistry,2011,42(5):439-450.
    [30]Yamanaka T,Sakata S.Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean[J].Organic Geochemistry,2004,35(5):573-582.
    [31]Colaco A,Desbruyeres D,Guezennec J.Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community[J].Marine Ecology,2007,28(1):15-24.
    [32]White D C,Stair J O,Ringelberg D B.Quantitative comparisons of in situ microbial biodiversity by signature biomarkers analysis[J].Journal of Industrial Microbiology,1996,17:185-196.
    [33]Wakeham S G,Cowen J P,Burd B J,et al.Lipid-rich ascending particles from the hydrothermal plume at Endeavour Segment,Juan de Fuca Ridge[J].Geochimica et Cosmochimica Acta,2001,65(6):923-939.
    [34]Summons R E,Jahnke L L,Simoneit B R T.Lipid Biomarkers for Bacterial Ecosystems:Studies of Cultured Organisms,Hydrothermal Environments and Ancient Sediments[M].London:John Wiley&Sons,1996.
    [35]Kristjansson J K,Schnheit P,Thauer R.Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria:An explanation for the apparent inhibition of methanogenesis by sulfate[J].Archives of Microbiology,1982,131:278-282.
    [36]Bradley A S,Fredricks H,Hinrichs K U,et al.Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field[J].Organic Geochemistry,2009,40(12):1169-1178.
    [37]Kvenvolden K A,Rapp J B,Hostettler F D,et al.Petroleum associated with polymetallic sulfide in sediment from Gorda Ridege[J].Science,1986,234:1231-1234.
    [38]Han J,McCarthy E D,Hoeven W V,et al.Organic geochemical studies:Ⅱ.A preliminary report on the distribution of aliphatic hydrocarbons in algae[J].Proceedings of the National Academy of Sciences of the United States of America,1968,59(1):29-33.
    [39]Volkman J K.A review of sterol markers for marine and terrigenous organic matter[J].Organic Geochemistry,1986,9:83-99.
    [40]Li J W,Zhou H Y,Peng X T,et al.Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney[J].Journal of Sea Research,2011,65(3):333-339.
    [41]Matsumoto G I,Watanuki K.Geochemical features of hydrocarbons and fatty-acids in sediment of the inland hydrothermal environments of Japan[J].Organic Geochemistry,1990,15(2):199-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700